Existence of solutions for semilinear elliptic problems without (PS) condition

Author:
Jianfu Yang

Translated by:

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1355-1366

MSC (2000):
Primary 35J20, 35J25, 35J60

DOI:
https://doi.org/10.1090/S0002-9939-03-07088-6

Published electronically:
December 12, 2003

MathSciNet review:
2053340

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish an existence result for semilinear elliptic problems with the associated functional not satisfying the Palais-Smale condition. The nonlinearity of our problem does not satisfy the Ambrosetti-Rabinowitz condition.

**[1]**A. Ambrosetti and P. H. Rabinowitz,*Dual variational methods in critical point theory and applications*, J. Funct. Anal.**14**(1973), 349 - 381. MR**51:6412****[2]**A. Bahri and P. L. Lions,*Solutions of superlinear elliptic equations and their Morse indices*, Comm. Pure Appl. Math.**45**(1992), 1205 - 1215. MR**93m:35077****[3]**H. Berestycki, I. Capuzzo-Dolcetta, and L. Nirenberg,*Superlinear indefinite elliptic problems and nonlinear Liouville theorems*, Topol. Methods in Nonlinear Anal.**4**(1994), 59 - 78. MR**96d:35041****[4]**H. Brézis and R. E. L. Turner,*On a class of superlinear elliptic problems*, Comm. Partial Differential Equations**2**(1977), 601 - 614. MR**58:23044****[5]**K. C. Chang,*Infinite-dimensional Morse theory and multiple solution problems*, Birkhäuser, Boston, 1993. MR**94e:58023****[6]**D. Costa and C. Magalhães,*A variational approach to subquadratic perturbations of elliptic systems*, J. Differential Equations**111**(1994), 103 - 122. MR**95f:35082****[7]**D. G. de Figueiredo, P.-L. Lions, and R. Nussbaum,*A priori estimates and existence of positive solutions of semilinear elliptic equations*, J. Math. Pures et Appl.**61**(1982), 41 - 63. MR**83h:35039****[8]**D. G. de Figueiredo and Jianfu Yang,*On a semilinear elliptic problem without (PS) condition*, J. Differential Equations**187**(2003), 412 - 428.**[9]**N. Ghoussoub,*Duality and perturbation methods in critical point theory*, Cambridge University Press, Cambridge, 1993. MR**95a:58021****[10]**B. Gidas and J. Spruck,*A priori bounds for positive solutions of nonlinear elliptic equations*, Comm. Partial Differential Equations**6**(1981), 883 - 901. MR**82h:35033****[11]**B. Gidas and J. Spruck,*Global and local behavior of positive solutions of nonlinear elliptic equations*, Comm. Pure Appl. Math.**34**(1981), 525 - 598. MR**83f:35045****[12]**H. Hofer,*A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem*, J. London Math. Soc.**31**(1985), 566 - 570. MR**87e:58041****[13]**L. Jeanjean,*On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on*, Proc. Royal Soc. Edinburgh Sect. A**129**(1999), 789 - 809. MR**2001c:35034****[14]**A. Harrabi, S. Rebhi, and A. Selmi,*Solutions of superlinear elliptic equations and their Morse indices, I*, Duke Math. J.**94**(1998), 141 - 157. MR**99i:35037****[15]**M. Ramos and L. Sanchez,*Homotopical linking and Morse index estimates in min-max theorems*, Manuscripta Math.**87**(1995), 269 - 284. MR**96f:58031****[16]**M. Ramos, S. Terracini, and C. Troestler,*Superlinear indefinite elliptic problems and Pohozaev type identities*, J. Funct. Anal.**159**(1998), 596 - 628. MR**2000h:35053****[17]**M. Struwe,*Variational methods*, second edition, Springer-Verlag, Berlin, 1996. MR**98f:49002****[18]**W. Zou,*Variant fountain theorems and their applications*, Manuscripta Math.**104**(2001), 343 - 358. MR**2002c:35081**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35J20,
35J25,
35J60

Retrieve articles in all journals with MSC (2000): 35J20, 35J25, 35J60

Additional Information

**Jianfu Yang**

Affiliation:
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, P.O. Box 71010, Wuhan 430071, Peoples Republic of China

Email:
jfyang@wipm.ac.cn

DOI:
https://doi.org/10.1090/S0002-9939-03-07088-6

Keywords:
Palais-Smale condition,
semilinear,
elliptic problem

Received by editor(s):
May 4, 2002

Received by editor(s) in revised form:
September 18, 2002

Published electronically:
December 12, 2003

Communicated by:
David S. Tartakoff

Article copyright:
© Copyright 2003
American Mathematical Society