Existence of solutions for semilinear elliptic problems without (PS) condition

Author:
Jianfu Yang

Translated by:

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1355-1366

MSC (2000):
Primary 35J20, 35J25, 35J60

Published electronically:
December 12, 2003

MathSciNet review:
2053340

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish an existence result for semilinear elliptic problems with the associated functional not satisfying the Palais-Smale condition. The nonlinearity of our problem does not satisfy the Ambrosetti-Rabinowitz condition.

**[1]**Antonio Ambrosetti and Paul H. Rabinowitz,*Dual variational methods in critical point theory and applications*, J. Functional Analysis**14**(1973), 349–381. MR**0370183****[2]**A. Bahri and P.-L. Lions,*Solutions of superlinear elliptic equations and their Morse indices*, Comm. Pure Appl. Math.**45**(1992), no. 9, 1205–1215. MR**1177482**, 10.1002/cpa.3160450908**[3]**H. Berestycki, I. Capuzzo-Dolcetta, and L. Nirenberg,*Superlinear indefinite elliptic problems and nonlinear Liouville theorems*, Topol. Methods Nonlinear Anal.**4**(1994), no. 1, 59–78. MR**1321809****[4]**H. Brézis and R. E. L. Turner,*On a class of superlinear elliptic problems*, Comm. Partial Differential Equations**2**(1977), no. 6, 601–614. MR**0509489****[5]**Kung-ching Chang,*Infinite-dimensional Morse theory and multiple solution problems*, Progress in Nonlinear Differential Equations and their Applications, 6, Birkhäuser Boston, Inc., Boston, MA, 1993. MR**1196690****[6]**D. G. Costa and C. A. Magalhães,*A variational approach to subquadratic perturbations of elliptic systems*, J. Differential Equations**111**(1994), no. 1, 103–122. MR**1280617**, 10.1006/jdeq.1994.1077**[7]**D. G. de Figueiredo, P.-L. Lions, and R. D. Nussbaum,*A priori estimates and existence of positive solutions of semilinear elliptic equations*, J. Math. Pures Appl. (9)**61**(1982), no. 1, 41–63. MR**664341****[8]**D. G. de Figueiredo and Jianfu Yang,*On a semilinear elliptic problem without (PS) condition*, J. Differential Equations**187**(2003), 412 - 428.**[9]**Nassif Ghoussoub,*Duality and perturbation methods in critical point theory*, Cambridge Tracts in Mathematics, vol. 107, Cambridge University Press, Cambridge, 1993. With appendices by David Robinson. MR**1251958****[10]**B. Gidas and J. Spruck,*A priori bounds for positive solutions of nonlinear elliptic equations*, Comm. Partial Differential Equations**6**(1981), no. 8, 883–901. MR**619749**, 10.1080/03605308108820196**[11]**B. Gidas and J. Spruck,*Global and local behavior of positive solutions of nonlinear elliptic equations*, Comm. Pure Appl. Math.**34**(1981), no. 4, 525–598. MR**615628**, 10.1002/cpa.3160340406**[12]**Helmut Hofer,*A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem*, J. London Math. Soc. (2)**31**(1985), no. 3, 566–570. MR**812787**, 10.1112/jlms/s2-31.3.566**[13]**Louis Jeanjean,*On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on 𝑅^{𝑁}*, Proc. Roy. Soc. Edinburgh Sect. A**129**(1999), no. 4, 787–809. MR**1718530**, 10.1017/S0308210500013147**[14]**A. Harrabi, S. Rebhi, and A. Selmi,*Solutions of superlinear elliptic equations and their Morse indices. I, II*, Duke Math. J.**94**(1998), no. 1, 141–157, 159–179. MR**1635912**, 10.1215/S0012-7094-98-09407-8**[15]**Miguel Ramos and Luis Sanchez,*Homotopical linking and Morse index estimates in min-max theorems*, Manuscripta Math.**87**(1995), no. 3, 269–284. MR**1340347**, 10.1007/BF02570474**[16]**Miguel Ramos, Susanna Terracini, and Christophe Troestler,*Superlinear indefinite elliptic problems and Pohožaev type identities*, J. Funct. Anal.**159**(1998), no. 2, 596–628. MR**1658097**, 10.1006/jfan.1998.3332**[17]**Michael Struwe,*Variational methods*, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 34, Springer-Verlag, Berlin, 1996. Applications to nonlinear partial differential equations and Hamiltonian systems. MR**1411681****[18]**Wenming Zou,*Variant fountain theorems and their applications*, Manuscripta Math.**104**(2001), no. 3, 343–358. MR**1828880**, 10.1007/s002290170032

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35J20,
35J25,
35J60

Retrieve articles in all journals with MSC (2000): 35J20, 35J25, 35J60

Additional Information

**Jianfu Yang**

Affiliation:
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, P.O. Box 71010, Wuhan 430071, Peoples Republic of China

Email:
jfyang@wipm.ac.cn

DOI:
http://dx.doi.org/10.1090/S0002-9939-03-07088-6

Keywords:
Palais-Smale condition,
semilinear,
elliptic problem

Received by editor(s):
May 4, 2002

Received by editor(s) in revised form:
September 18, 2002

Published electronically:
December 12, 2003

Communicated by:
David S. Tartakoff

Article copyright:
© Copyright 2003
American Mathematical Society