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ON BOHMAN’S CONJECTURE RELATED TO
A SUM PACKING PROBLEM OF ERDŐS

R. AHLSWEDE, H. AYDINIAN, AND L. H. KHACHATRIAN

(Communicated by John R. Stembridge)

Abstract. Motivated by a sum packing problem of Erdős, Bohman discussed
an extremal geometric problem which seems to have an independent interest.
Let H be a hyperplane in Rn such that H ∩ {0,±1}n = {0n}. The problem is
to determine

f(n) , max
H
|H ∩ {0,±1,±2}n|.

Bohman (1996) conjectured that

f(n) =
1

2
(1 +

√
2)n +

1

2
(1−

√
2)n.

We show that for some constants c1, c2 we have c1(2, 538)n < f(n) <

c2(2, 723)n—disproving the conjecture. We also consider a more general ques-
tion of the estimation of |H ∩ {0,±1, . . . ,±m}|, when H ∩ {0,±1, . . . ,±k} =
{0n}, m > k > 1.

1. Introduction and statement of the result

Let H be a hyperplane in Rn so that H ∩ {0,±1}n = {0n}. Let

f(n) = max
H
|H ∩ {0,±1,±2}n|.

The problem (of determination of f(n)) was raised by Bohman [1] in connection
with a subset sum problem of Erdős [2].

A set S of positive integers b1 < b2 < · · · < bn has distinct subset sums if all
sums of subsets are distinct. Erdős [2] asked for the value of

g(n) , min{an : S has distinct subset sums, |S| = n}.
A long-standing conjecture of Erdős claims that g(n) ≥ c2n for some constant c.
In [1] Bohman explained the relationship between functions f(n) and g(n), and

noticed that studying the function f(n) might be helpful for further investigation
of the problem of Erdős.

Suppose a hyperplane H defined by the equation

(1.1)
n−1∑
i=0

aixi = 0; a0, . . . , an−1 ∈ N
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satisfies H ∩ {0,±1}n = {0n}. This clearly means that {a0, . . . , an−1} has distinct
subset sums. A simple example of such a set with an−1 ≤ 2n−1 is {1, 2, 22, . . . , 2n−1}.
For more complicated examples see [1], [3].

For f(n), Bohman [1] conjectured that

f(n) =
1
2

(1 +
√

2)n +
1
2

(1−
√

2)n,

showing that this number can be achieved, taking ai = 2i (i = 0, . . . , n−1) in (1.1).
Let us consider now the hyperplanes defined by

(1.2)
n−1∑
i=0

2iλixi = 0,

where λ0, λ1, . . . , λn−1 are odd integers.
One can easily see that the set {λ0, 2λ, . . . , 2n−1λn−1} has distinct subset sums.
Let f∗(n) denote the maximum possible number of solutions xn ∈ {0,±1,±2}n

of equation (1.2) over all choices of odd integers λ0, λ1, . . . , λn−1.

Theorem 1. For some constants c′, c′′

c′(2, 538)n < f∗(n) < c′′(2, 547)n.

Clearly this means that f(n) > c1(2, 538)n and the conjecture of Bohman fails.
Our next goal is to give an upper bound for f(n). A simple upper bound is

(1.3) f(n) ≤ 3n.

Indeed, let X be the set of solutions xn ∈ {0,±1,±2}n of equation (1.1). Then
observe that for any un, vn ∈ {0, 1}n, un 6= vn, we have (X + un) ∩ (X + vn) =
∅. This implies that |X + {0, 1}n| = |X ||{0, 1}n| = |X |2n. On the other hand,{
X+{0, 1}n

}
⊂ {0,±1,±2, 3}n. Hence |X |2n ≤ 6n and thus (1.3). The next result

improves bound (1.3).

Theorem 2. For some constant c,

f(n) < c(2, 723)n.

Conjecture 1. For some constant c,

f(n) ∼ cβn,
where β is the largest real root of the equation z8 − 8z6 + 10z4 + 1 = 0 (β =
2, 5386 . . . ). The construction attaining this number is given in section 2.

We also consider a more general problem. Let Q ⊂ Z be finite and F =
{0,±1, . . . ,±k}. Then

f(n,Q, F ) , max
{
|H ∩Qn| : H is a hyperplane and H ∩ Fn = {0n}

}
.

In some cases we succeed in giving the exact answer.

Theorem 3. (i) Let Q = {0,±1, . . . ,±m}, F = {0,±1, · · · ± k} and k+ 1|2m+ 1.
Then

f(n,Q, F ) =
(

2m+ 1
k + 1

)n−1

.

(ii) Let Q = {0,±1, . . . ,±(m−1),m}, F = {0,±1, . . . ,±k} and k+ 1|2m. Then

f(n,Q, F ) =
(

2m
k + 1

)n−1

.
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An interesting case is

Q = {0,±1, . . . ,±(k + 1)}, F = {0,±1, . . . ,±k}, k ≥ 1.

Note that for k = 1 we have Bohman’s problem. It can be shown that

(1 +
√

2)n ≤ f(n,Q, F ) ≤ 3n.

The upper bound is derived exactly as above for k = 1. For the lower bound
consider the equation

(1.4) x0 + (k + 1)x1 + · · ·+ (k + 1)n−1xn−1 = 0.

Let X ⊂ Qn denote the set of solutions of (1.4). Clearly, X ∩ Fn = {0n}. On
the other hand, one can show that |X | = 1

2 (1 +
√

2)n + 1
2 (1−

√
2)n (as for k = 1).

We believe that Bohman’s conjecture is true for k ≥ 2, that is,

Conjecture 2. For Q = {0,±1, . . . ,±(k+ 1)}, F = {0,±1, . . . ,±k} and k ≥ 2 (or
a weaker condition for k > k0) one has

f(n,Q, F ) =
1
2

(1 +
√

2)n +
1
2

(1−
√

2)n.

2. Proof of Theorem 1

We start with an auxiliary statement. Let f∗λ(n) denote the maximum number
of solutions xn = (x0, . . . , xn−1) ∈ {0,±1,±2}n of the equation

(2.1)
n−1∑
i=0

2iλixi = λ

over all choices of odd integers λ0, . . . , λn−1 and a given integer λ. Remember that
f∗0 (n) = f∗(n).

Lemma 1.

f∗(n) ≥ 1
25
f∗λ(n).

Proof. Suppose we have an optimal equation (2.1). That is, for the solutions of
(2.1), X ⊂ {0,±1,±2}n, we get |X | = f∗λ(n).

For an integer µ consider the equation

(2µ+ 1)y + 2z + 4λ0x0 + · · ·+ 2n+1λn−1xn−1 = 0.

Then taking y = −2, z = 1, we come to equation
n−1∑
i=0

2iλixi = µ, which implies

that f∗(n+ 2) ≥ max
µ

fµ(n). On the other hand, clearly

max
µ

fµ(n) ≥ 1
25
f∗λ(n+ 2).

�

Consider the equation

(2.2) x0 + 2x1 + · · ·+ 2n−1xn−1 = λ.

Let X(λ) be the set of all solutions (from {0,±1,±2}n) of (2.2). With the help of
this lemma we can get a lower bound using an average argument. There are 5n

vectors (x0, . . . , xn−1) ∈ {0,±1,±2}n. On the other hand, there are 4(2n − 1) + 1
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possible values for λ for which equation (2.2) has solutions. Hence there exists a λ
such that

|X(λ)| ≥ 5n

4(2n − 1) + 1
.

This together with Lemma 1 implies that f(n) ≥ c(2, 5)n for some constant c,
which actually disproves the conjecture of Bohman. However, we can improve this
bound constructively.

Lower bound. As above let X(λ) = H ∩ {0,±1,±2}n, where H is the hyper-
plane defined by (2.2).

Also, let hλ(n) denote the number of solutions of (2.2), that is, hλ(n) = |X(λ)|.
Suppose that λ = 2s, where s is an integer. Then observe that

(2.3) h2s(n) = hs−1(n− 1) + hs(n− 1) + hs+1(n− 1).

Correspondingly, if λ = 2s+ 1, then

(2.4) h2s+1(n) = hs(n− 1) + hs+1(n− 1).

For a positive integer n, define

(2.5) Sn =

{
2n−1 + 2n−3 + · · ·+ 23 + 2, if 2 | n;
2n−1 + 2n−3 + · · ·+ 22 + 1, if 2 - n.

Claim. For 2 | n and some constant c,

(2.6) hSn(n) > c(2, 538)n.

Proof. In view of (2.3) we have

(2.7) hSn(n) = hSn−1−1(n− 1) + hSn−1(n− 1) + hSn−1+1(n− 1).

Correspondingly,

hSn−1−1(n− 1) = hSn−2−1(n− 2) + hSn−2(n− 2) + hSn−2+1(n− 2),

hSn−1(n− 1) = hSn−2(n− 2) + hSn−2+1(n− 2),(2.8)

hSn−1+1(n− 1) = hSn−2(n− 2) + hSn−2+1(n− 2) + hSn−2+2(n− 2).

It is easy to see that hSn(n) can be represented by linear combinations of the
functions hSn−i−1(n− i), hSn−i(n− i), hSn−i+1(n− i), hSn−i+2(n− i).
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In view of (2.7) and (2.8) we can write

hsn(n) = hSn−1+1(n− 1) + hSn−1(n− 1) + hSn−1(n− 1)

= hSn−2−1(n− 2) + 3hSn−2(n− 2) + 3hSn−2+1(n− 2)

+ hSn−2+2(n− 2)

= 4hSn−3−1(n− 3) + 8hSn−3(n− 3) + 7hSn−3+1(n− 3)

+ hSn−3+2(n− 3)

= 4hSn−4−1(n−4) + 19hSn−4(n−4) + 20hSn−4+1(n−4)

+ 8hSn−4+2(n− 4)
. . .

= aihSn−i−1(n− i) + bihSn−i(n− i) + cihSn−i+1(n− i)
+ dihSn−i+2(n− i)
. . .

= an−1hS1−1(1) + bn−1hS1(1) + cn−1hS1+1(1) + dn−1hS1+2(1)
= an−1 + bn−1 + cn−1 + dn−1.

(2.9)

From (2.7), (2.8) and (2.9) we obtain the following recurrences for the coefficients
ai, bi, ci, di in (2.9):

a2i = a2i−1,

b2i = a2i−1 + b2i−1 + c2i−1,

c2i = a2i−1 + b2i−1 + c2i−1 + d2i−1,

d2i = c2i−1 + d2i−1;

(2.10)

a2i+1 = a2i + b2i,

b2i+1 = a2i + b2i + c2i + d2i,

c2i+1 = b2i + c2i + d2i,

d2i+1 = d2i (i = 1, 2, . . . ).

(2.11)

Here are the first ten values of ai, bi, ci, di.

ai: 1 1 4 4 23 23 144 144 921 921,
bi: 1 3 8 19 51 121 328 777 2113 5003,
ci: 1 3 7 20 47 129 305 832 1969 5363,
di: 0 1 1 8 8 55 55 360 360 2329.

From (2.10) and (2.11) we obtain by elementary algebraic transformations the
following recurrences:

ti+8 = 8ti+6 − 10ti+4 − ti for ti ∈ {ai, bi, ci, di}, i = 1, 2, . . . .

In particular, we have

(2.12) c2i+8 = 8c2i+6 − 10c2i+4 − c2i
with initial values c2 = 3, c4 = 20, c6 = 129, c8 = 832.

The characteristic equation of (2.12),

(2.13) z8 − 8z6 + 10z4 + 1 = 0,

has a largest real root β = 2, 5386 . . . .
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Thus c2i can be estimated from below by c2i ≥ cβ2i > c(2.538)2i, for some
constant c definable from the initial values of c2i.

Furthermore, in view of (2.9) and (2.10) for n = 2k we have

hSn(n) = a2k−1 + b2k−1 + c2k−1 + d2k−1 = cn,

which implies that hSn(n) > c(2, 538)n.
Thus we have proved that f∗Sn(n) > (2, 538)n. This with Lemma 1 completes

the proof of the lower bound.
Upper bound. Consider the equation

(2.14) λ0x0 + 2λ1x1 + · · ·+ 2n−1λn−1xn−1 = λ.

We distinguish the three cases:

(α) λ ≡ 2 (mod 4): Then denote by hα(n) the maximum possible number of
solutions (from {0,±1,±2}n of equation (2.14)).

(β) λ ≡ 0 (mod 4): The corresponding notation for this case is hβ(n).
(γ) λ ≡ 1 or 3 (mod 4): The corresponding notation for this case is hγ(n).

Then one can easily observe that the following recurrence relations hold:

hα(n) ≤ hα(n− 1) + hβ(n− 1) + hγ(n− 1),

hβ(n) ≤ max
{
hα(n− 1), hβ(n− 1)

}
+ 2hγ(n− 1),(2.15)

hγ(n) ≤ max
{
hα(n− 1), hβ(n− 1)

}
+ hγ(n− 1).

We also have that hα(1) = hβ(1) = hγ(1) = 1.
Now introduce the functions gα(n), gβ(n), and gγ(n), so that gα(1) = gβ(1) =

gγ(1) = 1, and

gα(n) = gα(n− 1) + gβ(n− 1) + gγ(n− 1),

gβ(n) = max
{
gα(n− 1), gβ(n− 1)

}
+ 2gγ(n− 1),

gγ(n) = max
{
gα(n− 1), gβ(n− 1)

}
+ gγ(n− 1).

Clearly, we have that gα(n) ≥ hα(n), gβ(n) ≥ hβ(n), gγ(n) ≥ hγ(n).
Observe also that for n ≥ 3 we have gα(n) > gβ(n) > gγ(n).
Hence, finally, we come to the recurrences

gα(n) = gα(n− 1) + gβ(n− 1) + gγ(n− 1),

gβ(n) = gα(n− 1) + 2gγ(n− 1),(2.16)

gγ(n) = gα(n− 1) + gγ(n− 1).

From (2.16) we obtain the recurrence

(2.17) gα(n) = 2gα(n− 1) + gα(n− 2) + gα(n− 3)

with initial values gα(1) = 1, gα(2) = 3, gα(3) = 8.
Now to estimate the function f∗(n) it remains to solve recurrence (2.17), since

f∗(n) ≤ gα(n). The latter gives the estimation

gα(n) ≤ c′′(2, 547)n

for some constant c′′ definable from the initial values. This completes the proof of
Theorem 1. �



BOHMAN’S CONJECTURE RELATED TO SUM PACKING PROBLEM OF ERDŐS 1263

3. Proof of Theorem 2

Suppose that {a1, . . . , an} ⊂ N has distinct subset sums. Let X denote the set

of all solutions xn ∈ {0,±1,±2}n of the equation
n∑
i=1

aixi = λ.

Consider two mappings ϕ0 and ϕ1 from {0,±1,±2} to {0,±1} ϕ0(−2) = ϕ1(−2)
= −1, ϕ0(2) = ϕ1(2) = 1, ϕ0(±1) = ϕ1(±1) = 0, and ϕ0(0) = −1, ϕ1(0) = 1.

Next for xn ∈ X define

ϕ(xn) =
{

(ϕε1 (x1), . . . , ϕεn(xn)) : εi ∈ {0, 1}, i = 1, . . . , n
}
.

Claim 1. For xn, yn ∈ X , xn 6= yn,

ϕ(xn) ∩ ϕ(yn) = ∅.

Proof. Suppose the opposite. Then it is not hard to verify that xn−yn ∈ {0,±2}nr
{0n}, a contradiction. �

Let us define

α(xn) = the number of zero coordinates in xn.

Claim 2. For any xn ∈ X ,

|ϕ(xn)| = 2α(xn).

Proof. This immediately follows from the definition of ϕ(xn). �

Combining Claims 1 and 2, we conclude that

(3.1)
∑
xn∈X

2α(xn) ≤ 3n.

Now consider the mapping Ψ : X → {0,±1}n, defined by Ψ(xn) =
(
Ψ0(x1),

. . . ,Ψ0(xn)
)
, where

Ψ0(xi) =


−1, if xi = −2,−1,
1, if xi = 2, 1,
0, if xi = 0; i = 1, . . . , n.

Claim 3. For xn, zn ∈ X , xn 6= zn holds for Ψ(xn) 6= Ψ(zn).

Proof. Assuming the opposite, we will get xn − zn ∈ {0,±1}nr {0n}, a contradic-
tion. �

Note (and this is important for us) that Ψ leaves the zero coordinates fixed. This
with (3.1) implies that ∑

yn∈Ψ(X)

2α(yn) ≤ 3n.

Since |X | = |Ψ(X)|, we can bound |X | by the maximum cardinality of a set
Y ⊂ {0,±1}n satisfying

(3.2)
∑
yn∈Y

2α(yn) ≤ 3n.

Define
Yi =

{
yn ∈ Y : α(yn) = i

}
, i = 0, 1, . . . , n.

Note that |Yi| ≤ 2n−i
(
n
i

)
.
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Now (3.2) can be rewritten in the form

(3.3)
n∑
i=0

|Yi|2i ≤ 3n.

Observe that to maximize |Y | =
n∑
i=0

|Yi| we have to take

|Yi| =
{(

n
i

)
2n−i, if i ≤ `(n);

0, if i > `(n)

where `(n) is the maximal index for which we get
`(n)∑
i=0

2n−i
(
n

i

)
2i ≤ 3n.

This gives (using a standard technique) that `(n) ≥ b0, 1402 nc. Correspond-
ingly, we get an estimation for |Y | and consequently for |X |,

|X | ≤ |Y | < c
3n

20,14n
< c(2, 723)n,

for some constant c. �

4. Proof of Theorem 3

Let Q = {0,±1, . . . ,±m}, F = {0,±1, . . . ,±k} with α = (2m+ 1)/(k + 1).
(a) First we will show that f(n,Q, F ) ≤ αn−1. Let H be defined by

(4.1)
n∑
i=1

aixi = 0.

Also, let H ∩ Fn = {0n} and H ∩Qn = X with |X | = f(n,Q, F ).
Define Qj =

{
a ∈ Q : a ≡ j(modα)

}
, j = 0, 1, . . . , α− 1.

Then consider the mapping ϕ : X → Znα, defined by the transformation of
coordinates, ϕ(x1, . . . , xn) =

(
ϕ0(x1), . . . , ϕ0(xn)

)
, where ϕ0(xi) = j (i = 1, . . . , n)

if xi ∈ Qj ; j ∈ {0, . . . , α− 1}. Observe that ϕ is an injection. Hence |X | = |ϕ(X)|.
Note that now

dim
(
spanϕ(X)

)
≤ dim

(
span(X)

)
= n− 1.

This implies that

(4.2) |X | = |ϕ(X)| ≤ αn−1.

(b) Next, we will show that bound (4.2) can be achieved by taking the hyperplane
H defined by

(4.3) x0 + (k + 1)x1 + · · ·+ (k + 1)n−1xn−1 = 0.

In fact, H ∩ Fn = {0n}. Moreover, we claim that for any −m ≤ λ ≤ m, the
equation

(4.4)
n−1∑
i=0

xi(k + 1)i = λ

has exactly αn−1 solutions xn ∈ Qn. This can be shown using induction on n.
The case n = 1 is trivial.
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Induction step from n − 1 to n: Clearly, x0 ∈
{
a : −m ≤ a ≤ m, a ≡ λ

mod (k+1)
}

. Thus x0 can take α many values x0 ∈ [−m,m]. For each x0 we come
to the equation

x1 + (k + 1)x2 + · · ·+ (k + 1)n−2xn−1 =
λ− x0

k + 1

with
∣∣∣λ−x0
k+1

∣∣∣ ≤ 2m
k+1 ≤ m. Hence we get the result by the induction hypothesis.

This completes the proof of Theorem 3 in the case (i). The case (ii) can be proved
similarly. �
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