Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Numerical radius distance-preserving maps on $\mathcal{B}(H)$


Authors: Zhaofang Bai and Jinchuan Hou
Journal: Proc. Amer. Math. Soc. 132 (2004), 1453-1461
MSC (2000): Primary 47H20, 47B49; Secondary 47A12
DOI: https://doi.org/10.1090/S0002-9939-03-07190-9
Published electronically: September 30, 2003
MathSciNet review: 2053353
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $H$ be a complex Hilbert space, $\mathcal {B}(H)$ be the algebra of all bounded linear operators on $H$, $\mathcal {H}(H)$ be the subset of all selfadjoint operators in $\mathcal {B}(H)$ and $\mathcal{V}=\mathcal{B}(H)$ or $ {\mathcal H}(H)$. Denote by $w(A)$ the numerical radius of $A\in\mathcal{B}(H)$. We characterize surjective maps $\Phi:{\mathcal V}\rightarrow{\mathcal V}$ that satisfy $w(\Phi (A)-\Phi (B))=w(A-B)$ for all $A,B\in{\mathcal V}$ without the linearity assumption.


References [Enhancements On Off] (What's this?)

  • 1. Jor-Ting Chan, Numerical radius preserving operators on 𝐵(𝐻), Proc. Amer. Math. Soc. 123 (1995), no. 5, 1437–1439. MR 1231293, https://doi.org/10.1090/S0002-9939-1995-1231293-7
  • 2. P. A. Fillmore, Sums of operators with square zero, Acta Sci. Math. (Szeged) 28 (1967), 285–288. MR 0221301
  • 3. Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Graduate Texts in Mathematics, vol. 19, Springer-Verlag, New York-Berlin, 1982. Encyclopedia of Mathematics and its Applications, 17. MR 675952
  • 4. L. K. Hua, Geometries of matrices I. Generalizations of von Staudt's theorem, Trans. Amer. Math. Soc. 57 (1945), 441-481. MR 7:58b
  • 5. L. K. Hua, Geometries of matrices $I_1$. Arithmetical construction, Trans. Amer. Math. Soc. 57 (1945), 482-490. MR 7:58c
  • 6. L. K. Hua, Geometries of symmetric matrices over the real field I, Dokl. Akad. Nauk. SSSR 53 (1946), 95-97. MR 8:328b
  • 7. L. K. Hua, Geometries of symmetric matrices over the real field II, Dokl. Akad. Nauk. SSSR 53 (1946), 195-196. MR 8:328c
  • 8. L. K. Hua, Geometries of matrices II. Study of involutions in the geometry of symmetric matrices, Trans. Amer. Math. Soc. 61 (1947), 193-228. MR 9:171d
  • 9. L. K. Hua, Geometries of matrices III. Fundamental theorems in the geometry of symmetric matrices, Trans. Amer. Math. Soc. 61 (1947), 229-255. MR 9:171e
  • 10. L. K. Hua, Geometry of symmetric matrices over any field with characteristic other than two, Ann. Math. 50 (1949), 8-31. MR 10:424h
  • 11. L. K. Hua, A theorem on matrices over a field and its applications, Acta Math. Sinica 1 (1951), 109-163. MR 17:123a
  • 12. Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Graduate Studies in Mathematics, vol. 15, American Mathematical Society, Providence, RI, 1997. Elementary theory; Reprint of the 1983 original. MR 1468229
    Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, Graduate Studies in Mathematics, vol. 16, American Mathematical Society, Providence, RI, 1997. Advanced theory; Corrected reprint of the 1986 original. MR 1468230
  • 13. C. K. Li, L. Rodman, and P. Semrl, Linear maps on selfadjoint operators preserving invertibility, positive definiteness, numerical range, Canad. Math. Bull. 46 (2003), 216-228.
  • 14. Chi-Kwong Li and Peter Šemrl, Numerical radius isometries, Linear Multilinear Algebra 50 (2002), no. 4, 307–314. MR 1936954, https://doi.org/10.1080/03081080290025480
  • 15. S. Mazur and S. Ulam, Sur les transformations isométriques d $ ^{\prime }$espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946-948.
  • 16. Matjaž Omladič, On operators preserving the numerical range, Linear Algebra Appl. 134 (1990), 31–51. MR 1060008, https://doi.org/10.1016/0024-3795(90)90004-V
  • 17. Zhe-Xian Wan, Geometry of matrices, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. In memory of Professor L. K. Hua (1910–1985). MR 1409610

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47H20, 47B49, 47A12

Retrieve articles in all journals with MSC (2000): 47H20, 47B49, 47A12


Additional Information

Zhaofang Bai
Affiliation: School of Science, Xi$^{′}$an Jiaotong University, Xi$^{′}$an, 710049, P. R. China; Department of Mathematics, Shanxi Teachers University, Linfen, 041004, P. R. China

Jinchuan Hou
Affiliation: Department of Mathematics, Shanxi Teachers University, Linfen, 041004, P. R. China; Department of Mathematics, Shanxi University, Taiyuan, 030000, P. R. China
Email: jhou@dns.sxtu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-03-07190-9
Keywords: Numerical radius, Isometry, C*-isomorphism
Received by editor(s): September 27, 2002
Received by editor(s) in revised form: January 11, 2003
Published electronically: September 30, 2003
Additional Notes: This work was supported partially by NNSFC and PNSFS
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2003 American Mathematical Society