Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Isometries of certain operator spaces


Authors: R. Khalil and A. Saleh
Journal: Proc. Amer. Math. Soc. 132 (2004), 1473-1481
MSC (2000): Primary 46B20; Secondary 46B04
DOI: https://doi.org/10.1090/S0002-9939-03-07210-1
Published electronically: October 3, 2003
MathSciNet review: 2053355
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X$ and $Y$ be Banach spaces, and $L(X,Y)$ be the spaces of bounded linear operators from $X$ into $Y.$ In this paper we give full characterization of isometric onto operators of $L(X,Y),$ for a certain class of Banach spaces, that includes $\ell ^{p},$ $1<p<\infty .$ We also characterize the isometric onto operators of $L(c_{0})$ and $K(\ell ^{1}),$the compact operators on $\ell ^{1}.$ Furthermore, the multiplicative isometric onto operators of $L(\ell ^{1})$, when multiplication on $L(\ell ^{1})$ is taken to be the Schur product, are characterized.


References [Enhancements On Off] (What's this?)

  • 1. Alfsen, E. and Effros, E. Structure in real Banach spaces, I, II, Ann. of Math. 96 (1972), 98-128, 129-173. MR 50:5432
  • 2. Apiola, H. Duality between spaces of $p$-summable sequences, $(p,q)$-summing operators and characterization of nuclearity. Math. Ann. 219 (1976), 53-64. MR 52:11530
  • 3. Arazy, J. The isometries of $C_{p},$ Israel J. Math. 22 (1975), 247-256. MR 58:23760
  • 4. Behrends, E. $M$-structure and the Banach-Stone Theorem. Lecture Notes in Math. 736, Springer-Verlag, New York, 1979. MR 81b:46002
  • 5. Bennett, G. Schur multipliers, Duke Math. J. 44 (1977), 603-639. MR 58:12490
  • 6. Cohen, J. Absolutely $p$-summing, $p$-nuclear operators and their conjugates. Math. Ann. 201 (1973), 177-200. MR 51:6472
  • 7. Diestel, J. Geometry of Banach spaces, Lecture Notes in Math. 485, Springer-Verlag, New York, 1975. MR 57:1079
  • 8. Diestel, J. and Uhl, J. Vector measures, American Math. Soc., Providence, R.I., 1977. MR 56:12216
  • 9. Grzaslewicz, R. The Isometries of $L(\ell ^{p},\ell ^{r}).$Funct. Approx. Comment. Math. 26 (1998), 287-291. MR 2000i:47140
  • 10. Grothendieck, A. Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretzky-Rogers. Bol. Soc. Mat. São Paulo 8 (1956), 81-110. MR 20:1195
  • 11. Hennefeld, J. A decomposition for $B(X)$ and unique Hahn-Banach extensions, Pacific J. Math. 46 (1973) 197-199. MR 51:6492
  • 12. Jarosz, K. Isometries in semi-simple, commutative Banach algebras, Proc. Amer. Math. Soc. 94 (1985), 65-71. MR 86d:46044
  • 13. Jarosz, K. Isometries between injective tensor products of Banach spaces, Pacific J. Math. 121 (1986), 383-396. MR 87d:46019
  • 14. Kadison, R. Isometries of operator algebras, Ann. Math. 54 (1951), 325-338. MR 13:256a
  • 15. Khalil, R. Trace-class norm multipliers, Proc. Amer. Math. Soc. 79 (1980), 379-387. MR 82f:47054
  • 16. Khalil, R. Isometries of $L^{p}\stackrel{\wedge }{\otimes }L^{p}$ , Tamkang J. Math. 16 (1985), 77-85. MR 87e:46040
  • 17. Lacey, H. The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York, 1974. MR 58:12308
  • 18. Li, C. and Randrianantoanina, B. Isometries of direct sums of sequence spaces, Asian J. Math. 2 (1998), 157-180. MR 2000k:46007
  • 19. Pietsch, A. Absolut $p$-summierende Abbildungen in normierten Räumen. Studia Math. 28 (1967), 333-353. MR 35:7162
  • 20. Randtke, D. Characterization of precompact maps, Schwartz spaces, and nuclear spaces, Trans. Amer. Math. Soc. 165 (1972), 87-101. MR 46:4139
  • 21. Randtke, D. A compact operator characterization of $\ell ^{1}.$ Math. Ann. 208 (1974), 1-8. MR 49:3507
  • 22. Ruess, W. and Stegall, C. Extreme points in duals of operator spaces. Math. Ann. 261 (1982), 535-546. MR 84e:46007
  • 23. Saatkamp, K., $M$-ideals of compact operators. Math. Z. 158 (1978), 253-263. MR 57:10498
  • 24. Sourour, A. Isometries of norm ideals of compact operators, J. Funct. Analysis 43 (1981), 69-77. MR 84e:47061

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B20, 46B04

Retrieve articles in all journals with MSC (2000): 46B20, 46B04


Additional Information

R. Khalil
Affiliation: Department of Mathematics, University of Jordan, Amman 11942, Jordan
Email: roshdi@ju.edu.jo

A. Saleh
Affiliation: Department of Mathematics, King Hussein University, Maan, Jordan

DOI: https://doi.org/10.1090/S0002-9939-03-07210-1
Keywords: Isometries, operator spaces
Received by editor(s): June 17, 2002
Received by editor(s) in revised form: January 14, 2003
Published electronically: October 3, 2003
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society