Second cohomology group of group algebras with coefficients in iterated duals

Author:
A. Pourabbas

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1403-1410

MSC (2000):
Primary 43A20; Secondary 46M20

DOI:
https://doi.org/10.1090/S0002-9939-03-07219-8

Published electronically:
August 28, 2003

MathSciNet review:
2053346

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that the first cohomology group is zero for every odd and for every -set . In the case when is a discrete group, this is a generalization of the following result of Dales et al.: for any locally compact group , is -weakly amenable.

Next we show that the second cohomology group is a Banach space. Finally, for every locally compact group we show that is a Banach space for every odd .

**1.**W. G. Bade, P. C. Curtis, Jr. and H. G. Dales,*Amenability and weak amenability for Beurling and Lipschitz algebras*, Proc. London Math. Soc.**55**(1987) 359-377. MR**88f:46098****2.**H. G. Dales, F. Ghahramani, and N. Grønbæk,*Derivations into iterated duals of Banach algebras*, Studia Math.**128**(1998), 19-54. MR**99g:46064****3.**M. Despic and F. Ghahramani,*Weak amenability of group algebras of locally compact groups*, Canad. Math. Bull.**37**(1994), 165-167. MR**95c:43003****4.**F. P. Greenleaf,*Norm decreasing homomorphisms of group algebras*, Pacific J. Math.**15**(1965), 1187-1219. MR**33:3117****5.**R. I. Grigorchuk,*Some results on bounded cohomology*, London Math. Soc. Lecture Note Series**204**, Cambridge Univ. Press, Cambridge, 1995, pp. 111-163. MR**96j:20073****6.**N. Grønbæk,*Some concepts from group cohomology in the Banach algebra context.*Proc. Banach Algebras '97 Conference, Blaubeuren, 1998, pp. 205-222. MR**2000d:46087****7.**A. Ya. Helemskii,*The homology of Banach and topological algebras*, Mathematics and its Applications**41**, Kluwer Academic Publishers, Dordrecht, 1989. MR**92d:46178****8.**N. V. Ivanov,*Second bounded cohomology group*, J. Soviet Math.,**167**(1988), 117-120. MR**90a:55015****9.**B. E. Johnson,*Cohomology in Banach algebras*, Mem. Amer. Math. Soc.**127**(1972), 96 pp. MR**51:11130****10.**B. E. Johnson,*Derivations from into and*, Lecture Notes in Math.**1359**, Springer-Verlag, Berlin, 1988, pp. 191-198. MR**90a:46122****11.**B. E. Johnson,*Weak amenability of group algebras*, Bull. London Math. Soc.**23**(1991), 281-284. MR**92k:43004****12.**S. Matsumoto and S. Morita,*Bounded cohomology of certain groups of homeomorphisms*, Proc. Amer. Math. Soc.**94**(1985), 539-544. MR**87e:55006****13.**A. Pourabbas and M. C. White,*Second Bounded Group Cohomology of Group Algebras*, to appear.**14.**H. H. Schaefer,*Banach lattices and positive operators*, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, Berlin, 1974. MR**54:11023****15.**A. M. Sinclair and R. R. Smith,*Hochschild cohomology of von Neumann algebras*, London Math. Soc. Lecture Note Series**203**(1995), 196 pp. MR**96d:46094**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
43A20,
46M20

Retrieve articles in all journals with MSC (2000): 43A20, 46M20

Additional Information

**A. Pourabbas**

Affiliation:
Faculty of Mathematics and Computer Science, Amirkabir University, 424 Hafez Avenue, Tehran 15914, Iran

Email:
arpabbas@aut.ac.ir

DOI:
https://doi.org/10.1090/S0002-9939-03-07219-8

Received by editor(s):
January 14, 2002

Received by editor(s) in revised form:
December 31, 2002

Published electronically:
August 28, 2003

Additional Notes:
This research was supported by a grant from Amir Kabir University. The author would like thank the Institute for their kind support.

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2003
American Mathematical Society