Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A fixed point theorem in partially ordered sets and some applications to matrix equations


Authors: André C. M. Ran and Martine C. B. Reurings
Journal: Proc. Amer. Math. Soc. 132 (2004), 1435-1443
MSC (2000): Primary 47H10; Secondary 15A24, 54H25
DOI: https://doi.org/10.1090/S0002-9939-03-07220-4
Published electronically: September 18, 2003
MathSciNet review: 2053350
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An analogue of Banach's fixed point theorem in partially ordered sets is proved in this paper, and several applications to linear and nonlinear matrix equations are discussed.


References [Enhancements On Off] (What's this?)

  • 1. A. Björner,
    Order-reversing maps and unique fixed points in complete lattices,
    Algebra Universalis, 12:402-403, 1981. MR 82i:06006
  • 2. C. Blair and A. E. Roth,
    An extension and simple proof of a constrained lattice fixed point theorem,
    Algebra Universalis, 9:131-132, 1979. Erratum, ibid, 12:134, 1981. MR 80b:06009; MR 82c:06016
  • 3. S. M. El-Sayed and A. C. M. Ran,
    On an iteration method for solving a class of nonlinear matrix equations,
    SIAM J. Matrix Anal. Appl., 23:632-645, 2002. MR 2002m:15023
  • 4. I. Gohberg and S. Goldberg,
    Basic Operator Theory,
    Birkhäuser, Boston, MA, 1981. MR 83b:47001
  • 5. R. A. Horn and C. R. Johnson,
    Matrix Analysis,
    Cambridge University Press, Cambridge, 1985. MR 87e:15001
  • 6. P. Lancaster and M. Tismenetsky,
    The Theory of Matrices,
    Second edition, Academic Press, Inc., Orlando, FL, 1985. MR 87a:15001
  • 7. M. C. B. Reurings and A. C. M. Ran.
    The Symmetric Linear Matrix Equation,
    Electronic Journal of Linear Algebra 9 (2002), 93-107.
  • 8. M. C. B. Reurings and A. C. M. Ran,
    A nonlinear matrix equation connected to interpolation theory.
    Linear Algebra and its Applications, to appear.
  • 9. P. Rózsa,
    Lineare Matrizengleichungen und Kroneckersche Produkte,
    Zeitschrift fur angewandte Mathematik und Mechanik, 58:T395-T397, 1978. MR 58:22115
  • 10. L. A. Sakhnovich,
    Interpolation theory and its applications,
    Kluwer, Dordrecht, 1997. MR 99j:47016
  • 11. H. Schneider,
    Positive Operators and an Inertia Theorem,
    Numerische Mathematik 7:11-17, 1965. MR 30:3888
  • 12. A. Tarski,
    A lattice-theoretical fixpoint theorem and its applications,
    Pacific Journal of Math. 5:285-309, 1955. MR 17:574d

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47H10, 15A24, 54H25

Retrieve articles in all journals with MSC (2000): 47H10, 15A24, 54H25


Additional Information

André C. M. Ran
Affiliation: Afdeling Wiskunde, Faculteit der Exacte Wetenschappen. Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
Email: ran@cs.vu.nl

Martine C. B. Reurings
Affiliation: Afdeling Wiskunde, Faculteit der Exacte Wetenschappen. Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
Email: mcreurin@cs.vu.nl

DOI: https://doi.org/10.1090/S0002-9939-03-07220-4
Received by editor(s): June 19, 2002
Received by editor(s) in revised form: January 8, 2003
Published electronically: September 18, 2003
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society