-bounds for spectral multipliers on graphs

Authors:
Ioanna Kyrezi and Michel Marias

Translated by:

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1311-1320

MSC (2000):
Primary 42B15, 42B20, 42B30

Published electronically:
December 12, 2003

MathSciNet review:
2053335

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that certain spectral multipliers associated with the discrete Laplacian on graphs satisfying the doubling volume property and the Poincaré inequality are bounded on the Hardy space .

**1.**Georgios K. Alexopoulos,*Spectral multipliers on discrete groups*, Bull. London Math. Soc.**33**(2001), no. 4, 417–424. MR**1832553**, 10.1017/S0024609301008165**2.**G. Alexopoulos,*bounds for spectral multipliers from Gaussian estimates of the transition kernels*, preprint.**3.**Michael Christ,*𝐿^{𝑝} bounds for spectral multipliers on nilpotent groups*, Trans. Amer. Math. Soc.**328**(1991), no. 1, 73–81. MR**1104196**, 10.1090/S0002-9947-1991-1104196-7**4.**Ronald R. Coifman and Guido Weiss,*Extensions of Hardy spaces and their use in analysis*, Bull. Amer. Math. Soc.**83**(1977), no. 4, 569–645. MR**0447954**, 10.1090/S0002-9904-1977-14325-5**5.**T. Coulhon,*Random walks and geometry on infinite graphs*, Lectures notes on analysis on metric spaces, Trento, C.I.R.M., 1999, Luigi Ambrosio, Francesco Serra Cassano, ed., Scuola Normale Superiore di Pisa, (2000), 5-23.**6.**Thierry Delmotte,*Parabolic Harnack inequality and estimates of Markov chains on graphs*, Rev. Mat. Iberoamericana**15**(1999), no. 1, 181–232. MR**1681641**, 10.4171/RMI/254**7.**M. Marias and E. Russ,*-boundedness of Riesz transforms and imaginary powers of the Laplacian on Riemmanian manifolds*, Ark. Mat.,**41**, (2003), 115-132.**8.**Emmanuel Russ,*𝐻¹-𝐿¹ boundedness of Riesz transforms on Riemannian manifolds and on graphs*, Potential Anal.**14**(2001), no. 3, 301–330. MR**1822920**, 10.1023/A:1011269629655**9.**E. Russ,*Temporal regularity for random walks and Riesz transforms on graphs for*, preprint.**10.**L. Saloff-Coste,*Parabolic Harnack inequality for divergence-form second-order differential operators*, Potential Anal.**4**(1995), no. 4, 429–467. Potential theory and degenerate partial differential operators (Parma). MR**1354894**, 10.1007/BF01053457**11.**Adam Sikora and James Wright,*Imaginary powers of Laplace operators*, Proc. Amer. Math. Soc.**129**(2001), no. 6, 1745–1754 (electronic). MR**1814106**, 10.1090/S0002-9939-00-05754-3**12.**Elias M. Stein,*Topics in harmonic analysis related to the Littlewood-Paley theory.*, Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR**0252961**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
42B15,
42B20,
42B30

Retrieve articles in all journals with MSC (2000): 42B15, 42B20, 42B30

Additional Information

**Ioanna Kyrezi**

Affiliation:
Department of Applied Mathematics, University of Crete, Iraklio 714.09, Crete, Greece

Email:
kyrezi@fourier.math.uoc.gr

**Michel Marias**

Affiliation:
Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki 54.124, Greece

Email:
marias@math.auth.gr

DOI:
http://dx.doi.org/10.1090/S0002-9939-03-07356-8

Keywords:
Graphs,
spectral multipliers,
imaginary powers of the Laplacian,
Hardy spaces,
Markov kernels

Received by editor(s):
February 24, 2002

Published electronically:
December 12, 2003

Communicated by:
Andreas Seeger

Article copyright:
© Copyright 2003
American Mathematical Society