The Cheeger constant of simply connected, solvable Lie groups
Authors:
Norbert Peyerimhoff and Evangelia Samiou
Translated by:
Journal:
Proc. Amer. Math. Soc. 132 (2004), 15251529
MSC (2000):
Primary 53C30, 22E25
Published electronically:
December 23, 2003
MathSciNet review:
2053361
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We show that the Cheeger isoperimetric constant of a solvable simply connected Lie group with Lie algebra is
 [Br]
Robert
Brooks, The spectral geometry of a tower of coverings, J.
Differential Geom. 23 (1986), no. 1, 97–107. MR 840402
(87j:58095)
 [BPP]
Robert
Brooks, Peter
Perry, and Peter
Petersen V, On Cheeger’s inequality, Comment. Math.
Helv. 68 (1993), no. 4, 599–621. MR 1241474
(94k:58150), http://dx.doi.org/10.1007/BF02565837
 [Bu]
Peter
Buser, A note on the isoperimetric constant, Ann. Sci.
École Norm. Sup. (4) 15 (1982), no. 2,
213–230. MR
683635 (84e:58076)
 [Cha]
Isaac
Chavel, Eigenvalues in Riemannian geometry, Pure and Applied
Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984.
Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
(86g:58140)
 [Che]
Jeff
Cheeger, A lower bound for the smallest eigenvalue of the
Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner,
1969) Princeton Univ. Press, Princeton, N. J., 1970,
pp. 195–199. MR 0402831
(53 #6645)
 [Co]
Christopher
Connell, Asymptotic harmonicity of negatively curved homogeneous
spaces and their measures at infinity, Comm. Anal. Geom.
8 (2000), no. 3, 575–633. MR 1775140
(2001j:53061)
 [Gr]
Alexander
Grigor′yan, Estimates of heat kernels on Riemannian
manifolds, Spectral theory and geometry (Edinburgh, 1998) London
Math. Soc. Lecture Note Ser., vol. 273, Cambridge Univ. Press,
Cambridge, 1999, pp. 140–225. MR 1736868
(2001b:58040), http://dx.doi.org/10.1017/CBO9780511566165.008
 [Ho]
Harry
F. Hoke III, Lie groups that are closed at
infinity, Trans. Amer. Math. Soc.
313 (1989), no. 2,
721–735. MR
935533 (89j:58108), http://dx.doi.org/10.1090/S00029947198909355332
 [Kn]
G.
Knieper, On the asymptotic geometry of nonpositively curved
manifolds, Geom. Funct. Anal. 7 (1997), no. 4,
755–782. MR 1465601
(98h:53055), http://dx.doi.org/10.1007/s000390050025
 [Leu]
Enrico
Leuzinger, Kazhdan’s property (T), 𝐿²spectrum
and isoperimetric inequalities for locally symmetric spaces, Comment.
Math. Helv. 78 (2003), no. 1, 116–133. MR 1966754
(2004a:53047), http://dx.doi.org/10.1007/s000140300005
 [Ma]
Anthony
Manning, Topological entropy for geodesic flows, Ann. of Math.
(2) 110 (1979), no. 3, 567–573. MR 554385
(81e:58044), http://dx.doi.org/10.2307/1971239
 [Pa]
Alan
L. T. Paterson, Amenability, Mathematical Surveys and
Monographs, vol. 29, American Mathematical Society, Providence, RI,
1988. MR
961261 (90e:43001)
 [Pe]
Norbert
Peyerimhoff, Isoperimetric and ergodic properties of horospheres in
symmetric spaces, Smooth ergodic theory and its applications (Seattle,
WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc.,
Providence, RI, 2001, pp. 797–808. MR 1858556
(2002i:37031), http://dx.doi.org/10.1090/pspum/069/1858556
 [Pi]
Ch.
Pittet, The isoperimetric profile of homogeneous Riemannian
manifolds, J. Differential Geom. 54 (2000),
no. 2, 255–302. MR 1818180
(2002g:53088)
 [Sp]
R. J. Spatzier, Dynamical properties of algebraic systems, Dissertation, Warwick and Maryland, 1983.
 [Br]
 R. Brooks, The spectral geometry of a tower of coverings, J. Differential Geom. 23, 97107, 1986. MR 87j:58095
 [BPP]
 R. Brooks, P. Perry, and P. Petersen, On Cheeger's inequality, Comment. Math. Helvetici 68, 599621, 1993. MR 94k:58150
 [Bu]
 P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. 15, 213230, 1982. MR 84e:58076
 [Cha]
 I. Chavel, Eigenvalues in Riemannian geometry, Academic Press, Orlando, FL, 1984. MR 86g:58140
 [Che]
 J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, ``Problems in Analysis", pp. 195199, Princeton Univ. Press, Princeton, NJ, 1970. MR 53:6645
 [Co]
 Ch. Connell, Asymptotic harmonicity of negatively curved homogeneous spaces and their measures at infinity, Comm. Anal. Geom., vol. 8, no. 3, 575633, 2000. MR 2001j:53061
 [Gr]
 A. Grigor'yan, Estimates of heat kernels on Riemannian manifolds, ``Spectral theory and geometry", pp. 140225, Cambridge Univ. Press, Cambridge, 1999. MR 2001b:58040
 [Ho]
 H. F. Hoke III, Lie groups that are closed at infinity, Trans. Amer. Math. Soc. 313, Number 2, 721735, 1989. MR 89j:58108
 [Kn]
 G. Knieper, On the asymptotic geometry of nonpositively curved manifolds, Geom. Funct. Anal. 7, 755782, 1997. MR 98h:53055
 [Leu]
 E. Leuzinger, Kazhdan's property (T), spectrum and isoperimetric inequalities for locally symmetric spaces, Comment. Math. Helv. 78, 116133, 2003. MR 2004a:53047
 [Ma]
 A. Manning, Topological entropy for geodesic flows, Ann. of Math. (2) 110, 567573, 1979. MR 81e:58044
 [Pa]
 A. Paterson, Amenability, Mathematical Surveys and Monographs, no. 29, Amer. Math. Soc., Providence, RI, 1988. MR 90e:43001
 [Pe]
 N. Peyerimhoff, Isoperimetric and ergodic properties of horospheres in symmetric spaces, in A. Katok, R. de la Llave, Y. Pesin, H. Weiss, editors, Smooth ergodic theory and its applications, Proc. Sympos. Pure Math. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 793808. MR 2002i:37031
 [Pi]
 Ch. Pittet, The isoperimetric profile of homogeneous Riemannian manifolds, J. Differential Geom. 54, 255302, 2000. MR 2002g:53088
 [Sp]
 R. J. Spatzier, Dynamical properties of algebraic systems, Dissertation, Warwick and Maryland, 1983.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
53C30,
22E25
Retrieve articles in all journals
with MSC (2000):
53C30,
22E25
Additional Information
Norbert Peyerimhoff
Affiliation:
Mathematische Fakultät, RuhrUniversität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
Email:
peyerim@math.ruhrunibochum.de
Evangelia Samiou
Affiliation:
Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
Email:
samiou@ucy.ac.cy
DOI:
http://dx.doi.org/10.1090/S0002993903074045
PII:
S 00029939(03)074045
Received by editor(s):
November 6, 2001
Published electronically:
December 23, 2003
Communicated by:
Wolfgang Ziller
Article copyright:
© Copyright 2003
American Mathematical Society
