The Cheeger constant of simply connected, solvable Lie groups

Authors:
Norbert Peyerimhoff and Evangelia Samiou

Translated by:

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1525-1529

MSC (2000):
Primary 53C30, 22E25

DOI:
https://doi.org/10.1090/S0002-9939-03-07404-5

Published electronically:
December 23, 2003

MathSciNet review:
2053361

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the Cheeger isoperimetric constant of a solvable simply connected Lie group with Lie algebra is

**[Br]**R. Brooks,*The spectral geometry of a tower of coverings*, J. Differential Geom. 23, 97-107, 1986. MR**87j:58095****[BPP]**R. Brooks, P. Perry, and P. Petersen,*On Cheeger's inequality*, Comment. Math. Helvetici 68, 599-621, 1993. MR**94k:58150****[Bu]**P. Buser,*A note on the isoperimetric constant*, Ann. Sci. École Norm. Sup. 15, 213-230, 1982. MR**84e:58076****[Cha]**I. Chavel,*Eigenvalues in Riemannian geometry*, Academic Press, Orlando, FL, 1984. MR**86g:58140****[Che]**J. Cheeger,*A lower bound for the smallest eigenvalue of the Laplacian*, ``Problems in Analysis", pp. 195-199, Princeton Univ. Press, Princeton, NJ, 1970. MR**53:6645****[Co]**Ch. Connell,*Asymptotic harmonicity of negatively curved homogeneous spaces and their measures at infinity*, Comm. Anal. Geom., vol. 8, no. 3, 575-633, 2000. MR**2001j:53061****[Gr]**A. Grigor'yan,*Estimates of heat kernels on Riemannian manifolds*, ``Spectral theory and geometry", pp. 140-225, Cambridge Univ. Press, Cambridge, 1999. MR**2001b:58040****[Ho]**H. F. Hoke III,*Lie groups that are closed at infinity*, Trans. Amer. Math. Soc. 313, Number 2, 721-735, 1989. MR**89j:58108****[Kn]**G. Knieper,*On the asymptotic geometry of nonpositively curved manifolds*, Geom. Funct. Anal. 7, 755-782, 1997. MR**98h:53055****[Leu]**E. Leuzinger,*Kazhdan's property (T), -spectrum and isoperimetric inequalities for locally symmetric spaces*, Comment. Math. Helv. 78, 116-133, 2003. MR**2004a:53047****[Ma]**A. Manning,*Topological entropy for geodesic flows*, Ann. of Math. (2) 110, 567-573, 1979. MR**81e:58044****[Pa]**A. Paterson,*Amenability*, Mathematical Surveys and Monographs, no. 29, Amer. Math. Soc., Providence, RI, 1988. MR**90e:43001****[Pe]**N. Peyerimhoff,*Isoperimetric and ergodic properties of horospheres in symmetric spaces*, in A. Katok, R. de la Llave, Y. Pesin, H. Weiss, editors, Smooth ergodic theory and its applications, Proc. Sympos. Pure Math. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 793-808. MR**2002i:37031****[Pi]**Ch. Pittet,*The isoperimetric profile of homogeneous Riemannian manifolds*, J. Differential Geom. 54, 255-302, 2000. MR**2002g:53088****[Sp]**R. J. Spatzier,*Dynamical properties of algebraic systems*, Dissertation, Warwick and Maryland, 1983.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
53C30,
22E25

Retrieve articles in all journals with MSC (2000): 53C30, 22E25

Additional Information

**Norbert Peyerimhoff**

Affiliation:
Mathematische Fakultät, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany

Email:
peyerim@math.ruhr-uni-bochum.de

**Evangelia Samiou**

Affiliation:
Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

Email:
samiou@ucy.ac.cy

DOI:
https://doi.org/10.1090/S0002-9939-03-07404-5

Received by editor(s):
November 6, 2001

Published electronically:
December 23, 2003

Communicated by:
Wolfgang Ziller

Article copyright:
© Copyright 2003
American Mathematical Society