The Cheeger constant of simply connected, solvable Lie groups

Authors:
Norbert Peyerimhoff and Evangelia Samiou

Translated by:

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1525-1529

MSC (2000):
Primary 53C30, 22E25

Published electronically:
December 23, 2003

MathSciNet review:
2053361

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the Cheeger isoperimetric constant of a solvable simply connected Lie group with Lie algebra is

**[Br]**Robert Brooks,*The spectral geometry of a tower of coverings*, J. Differential Geom.**23**(1986), no. 1, 97–107. MR**840402****[BPP]**Robert Brooks, Peter Perry, and Peter Petersen V,*On Cheeger’s inequality*, Comment. Math. Helv.**68**(1993), no. 4, 599–621. MR**1241474**, 10.1007/BF02565837**[Bu]**Peter Buser,*A note on the isoperimetric constant*, Ann. Sci. École Norm. Sup. (4)**15**(1982), no. 2, 213–230. MR**683635****[Cha]**Isaac Chavel,*Eigenvalues in Riemannian geometry*, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR**768584****[Che]**Jeff Cheeger,*A lower bound for the smallest eigenvalue of the Laplacian*, Problems in analysis (Papers dedicated to Salomon Bochner, 1969) Princeton Univ. Press, Princeton, N. J., 1970, pp. 195–199. MR**0402831****[Co]**Christopher Connell,*Asymptotic harmonicity of negatively curved homogeneous spaces and their measures at infinity*, Comm. Anal. Geom.**8**(2000), no. 3, 575–633. MR**1775140**, 10.4310/CAG.2000.v8.n3.a7**[Gr]**Alexander Grigor′yan,*Estimates of heat kernels on Riemannian manifolds*, Spectral theory and geometry (Edinburgh, 1998) London Math. Soc. Lecture Note Ser., vol. 273, Cambridge Univ. Press, Cambridge, 1999, pp. 140–225. MR**1736868**, 10.1017/CBO9780511566165.008**[Ho]**Harry F. Hoke III,*Lie groups that are closed at infinity*, Trans. Amer. Math. Soc.**313**(1989), no. 2, 721–735. MR**935533**, 10.1090/S0002-9947-1989-0935533-2**[Kn]**G. Knieper,*On the asymptotic geometry of nonpositively curved manifolds*, Geom. Funct. Anal.**7**(1997), no. 4, 755–782. MR**1465601**, 10.1007/s000390050025**[Leu]**Enrico Leuzinger,*Kazhdan’s property (T), 𝐿²-spectrum and isoperimetric inequalities for locally symmetric spaces*, Comment. Math. Helv.**78**(2003), no. 1, 116–133. MR**1966754**, 10.1007/s000140300005**[Ma]**Anthony Manning,*Topological entropy for geodesic flows*, Ann. of Math. (2)**110**(1979), no. 3, 567–573. MR**554385**, 10.2307/1971239**[Pa]**Alan L. T. Paterson,*Amenability*, Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988. MR**961261****[Pe]**Norbert Peyerimhoff,*Isoperimetric and ergodic properties of horospheres in symmetric spaces*, Smooth ergodic theory and its applications (Seattle, WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 797–808. MR**1858556**, 10.1090/pspum/069/1858556**[Pi]**Ch. Pittet,*The isoperimetric profile of homogeneous Riemannian manifolds*, J. Differential Geom.**54**(2000), no. 2, 255–302. MR**1818180****[Sp]**R. J. Spatzier,*Dynamical properties of algebraic systems*, Dissertation, Warwick and Maryland, 1983.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
53C30,
22E25

Retrieve articles in all journals with MSC (2000): 53C30, 22E25

Additional Information

**Norbert Peyerimhoff**

Affiliation:
Mathematische Fakultät, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany

Email:
peyerim@math.ruhr-uni-bochum.de

**Evangelia Samiou**

Affiliation:
Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus

Email:
samiou@ucy.ac.cy

DOI:
http://dx.doi.org/10.1090/S0002-9939-03-07404-5

Received by editor(s):
November 6, 2001

Published electronically:
December 23, 2003

Communicated by:
Wolfgang Ziller

Article copyright:
© Copyright 2003
American Mathematical Society