MINIMAL POLYNOMIALS OF ELEMENTS OF ORDER p
IN p-MODULAR PROJECTIVE REPRESENTATIONS
OF ALTERNATING GROUPS

A. S. KLESHCHEV AND A. E. ZALESSKI

(Communicated by Stephen D. Smith)

Abstract. Let F be an algebraically closed field of characteristic $p > 0$ and let G be a quasi-simple group with $G/Z(G) \cong A_n$. We describe the minimal polynomials of elements of order p in irreducible representations of G over F. If $p = 2$, we determine the minimal polynomials of elements of order 4 in 2-modular irreducible representations of A_n, S_n, $3 \cdot A_6$, $3 \cdot S_6$, $3 \cdot A_7$, and $3 \cdot S_7$.

1. Introduction

Throughout the paper, F is an algebraically closed field of characteristic $p > 0$ and all representations are F-representations unless otherwise stated. Let A_n and S_n denote the alternating and symmetric groups on n letters. We always assume that $n \geq 5$. Let G be a quasi-simple group with $G/Z(G) \cong A_n$, and let

$$\pi : G \to A_n$$

be the natural projection. Thus G is one of the following groups: A_n, $\tilde{A}_n := 2 \cdot A_n$, $k \cdot A_6$, or $k \cdot A_7$ for $k = 3, 6$.

Our goal is to determine the minimal polynomials of the elements $g \in G$ of order p in the irreducible representations of G. Minimal polynomials of such elements are always of the form $(x - 1)^d$ for some $d \leq p$, and we determine all configurations where $d < p$.

Theorem 1.1. Let G be a quasi-simple group with $G/Z(G) \cong A_n$, let $g \in G \setminus Z(G)$ be an element of order p, and let ϕ be a faithful irreducible representation of G over F. Then the degree d of the minimal polynomial of $\phi(g)$ is less than p if and only if one of the following happens:

(i) $\pi(g)$ is a product of two 3-cycles, $G = \tilde{A}_6$, $p = 3$, and ϕ is a basic spin representation of dimension 2.

(ii) $\pi(g)$ is a p-cycle and one of the following holds:

(a) $G = A_p$, and ϕ is the “natural” representation of dimension $p - 2$;
(b) $G = \tilde{A}_n$, $p = 3$ or 5, and ϕ is a basic spin representation;
(c) $G = 3 \cdot A_7$ or $6 \cdot A_7$, $p = 7$, and $\dim \phi = 6$;
(d) $G = \tilde{A}_7$, $p = 7$, and $\dim \phi = 4$;
(e) $G = \tilde{A}_5$, $p = 5$, and $\dim \phi = 4$;

Received by the editors November 18, 2002 and, in revised form, February 19, 2003.

2000 Mathematics Subject Classification. Primary 20C30; Secondary 20C20, 20D06.

©2003 American Mathematical Society
(f) \(G = 3 \cdot A_6 \) or \(3 \cdot A_7 \), \(p = 5 \), and \(\dim \phi = 3 \).

Moreover, \(d = p - 1 \) in the case (ii)(b) above, and \(d = \dim \phi \) in the remaining exceptional cases.

In particular, we see that there are two “reasons” for the minimal polynomial of an element of order \(p \) to have degree less than \(p \) in an irreducible representation of \(G \). One is trivial—the dimension of our representation might be less than \(p \). The other is less obvious—\(p = 3 \) or \(5 \) and the representation is a basic spin representation (these representations are known to be a source of many counterexamples and are pretty well-understood). We note that the degrees of the basic representations of \(\hat{A}_n \) in prime characteristic may differ from those in zero characteristic; see Lemma 2.6 below.

In the proofs we only have to deal with the case \(p > 3 \), since the case \(p = 3 \) of Theorem 1.1 has recently been settled by Chermak [3].

Obviously, the case \(p = 2 \) is trivial for elements of order 2. However, a version of the question for \(g \in G \) of order 4 is of essential interest. Of course, when \(p = 2 \) we do not need to deal with two-fold coverings. However, the case \(G = S_n \) does not automatically reduce to \(A_n \) since \(g \) may not belong to \(A_n \). So we consider \(S_n \) as well.

Theorem 1.2. Let \(p = 2 \), \(n \geq 5 \), \(G \in \{ A_n, S_n, 3 \cdot A_6, 3 \cdot S_6, 3 \cdot A_7, 3 \cdot S_7 \} \), \(g \in G \) be an element of order 4, and let \(\phi \) be a faithful irreducible representation of \(G \) over \(F \). Then the degree \(d \) of the minimal polynomial of \(\phi(g) \) is less than 4 if and only if \(d = 3 \) and one of the following happens:

(a) \(g \) is of cycle type \((4, 2)\), and either \(G \cong 3 \cdot A_6 \), \(\dim \phi = 3 \) or \(G \cong 3 \cdot S_6 \), \(\dim \phi = 6 \);

(b) \(G \cong A_8 \cong SL(4, 2) \), \(g \) is of cycle type \((4, 4)\), and \(\phi \) is either the natural representation of \(SL(4, 2) \), or its dual, or its exterior square;

(c) \(G \cong S_8 \), \(g \) is of cycle type \((4, 4)\), and \(\dim \phi = 8 \) or 6.

2. Preliminaries

If \(M \) is a matrix, we denote by \(\deg M \) the degree of the minimal polynomial of \(M \) and by \(\text{Jord} M \) the Jordan normal form of \(M \) (defined up to the ordering of Jordan blocks). The Jordan block of size \(k \) with eigenvalue 1 is denoted by \(J_k \). The symbol \(\text{diag}(a_1, \ldots, a_k) \) denotes the block-diagonal matrix with square matrices \(a_1, \ldots, a_k \) along the diagonal.

If \(G \) is any group, we denote by \(1_G \) the trivial \(FG \)-module (or the corresponding representation). If \(M \) is an \(FG \)-module (resp. \(\phi : G \to GL(M) \) is a representation of \(G \)), and \(H < G \) is a subgroup, then \(M|H \) (resp. \(\phi|H \)) stands for the restriction of \(M \) (resp. \(\phi \)) to \(H \).

We record the following obvious fact.

Lemma 2.1. Let \(G \) be a finite group and \(g \in G \). If \(\rho \) and \(\phi \) are representations of \(G \) such that \(\rho \) is a subfactor of \(\phi \), then \(\deg \rho(g) \leq \deg \phi(g) \).

Let \(m < n \). Throughout the paper we will often consider \(S_m \) as a subgroup of \(S_n \), \(A_m \) as a subgroup of \(A_n \), etc. Unless otherwise stated, the embeddings are assumed to be natural, i.e., the subgroup acts on the first \(m \) letters.

Now, let \(G = A_n \) or \(S_n \). We will refer to the nontrivial composition factor of the natural \(n \)-dimensional permutation \(FG \)-module as the natural irreducible module.
and denote it by E_n. Denote by ε_n the corresponding representation. We have $\dim \varepsilon_n = n - 2$ if $p | n$ and $\dim \varepsilon_n = n - 1$ otherwise.

Lemma 2.2. Let $G = S_n$ or A_n and let $g \in G$ be an element of order p. Then the degree d of the minimal polynomial of $\varepsilon_n(g)$ is p, unless $n = p$, in which case $d = p - 2$.

Proof. An easy explicit calculation (see, e.g., [8, Lemmas 2.1 and 2.2]). \qed

Let 1_{S_n} be the sign module over FS_n, and set $E_n^- = E_n \otimes 1_{S_n}$. Define

$$E_n := \{1_{S_n}, 1_{S_n}, E_n, E_n^\sim\}. $$

If λ is a p-regular partition, D^λ denotes the irreducible FS_n-module corresponding to λ; see [6]. The following is a useful inductive characterization of the FS_n-modules from E_n.

Proposition 2.3. Let $n \geq 6$ and let D be an irreducible FS_n-module. Suppose that all composition factors of the restriction $D|S_{n-1}$ belong to E_{n-1}. Then $D \in E_n$, unless $n = 6, p = 3$ and $D \in \{D^{(4,2)}, D^{(2^2,1^2)}\}$, or $n = 6, p = 5$ and $D \in \{D^{(4,1^2)}, D^{(3,1^3)}\}$.

Proof. By tensoring with 1_{S_n}, if necessary, we may assume that $1_{S_{n-1}}$ or E_{n-1} occurs in the socle of $D|S_{n-1}$. Then it follows from [7, Theorem 0.5] that either $D \in E_n$ or $D \in \{D^{(n-2,2)}, D^{(n-2,1^2)}\}$. However, by [7, Theorem 0.4(ii)], $D^{(n-2,2)}|S_{n-1}$ contains $D^{(n-3,2)}$ as a composition factor, and $D^{(n-3,2)} \notin E_{n-1}$ unless $n = 6$ and $p = 3$. Similarly, $D^{(n-2,1^2)}|S_{n-1}$ contains $D^{(n-3,1^2)}$ as a composition factor and $D^{(n-3,1^2)} \notin E_{n-1}$ unless $n = 6$ and $p = 5$. \qed

Corollary 2.4. Let $n \geq 7$, and let V be an irreducible FA_n-module such that all composition factors of the restriction $V|A_{n-1}$ belong to $\{1_{A_n}, E_{n-1}\}$. Then $V \in \{1_{A_n}, E_n\}$.

Proof. Follows from Clifford theory and Proposition 2.3. \qed

We need the following result of Benson in characteristic 2:

Lemma 2.5 (11). Let $\lambda = (\lambda_1, \lambda_2, \ldots)$ be a 2-regular partition. Then $D^\lambda|A_n$ splits as a direct sum of two non-equivalent irreducible FA_n-modules if and only if for all j with $\lambda_{2j} > 0$ we have $\lambda_{2j-1} = 1$ or 2, and $\lambda_{2j-1} + \lambda_{2j} \equiv 2 \text{ (mod 4)}$. Otherwise, $D^\lambda|A_n$ is irreducible.

Let S_n denote a (nontrivial) two-fold central cover of S_n. Of course, \hat{A}_n is a subgroup in S_n of index 2. The group S_n has (one or two) remarkable complex representations called basic (spin) representations. These can be characterized as its faithful complex representations of minimal degree and can be constructed using Clifford algebras. A basic spin representation can also be defined as an irreducible representation of S_n whose character is labelled by the partition (n) in Schur’s parametrization of irreducible characters. The degree of a basic representation of S_n is $2^{(n-1)/2}$ if n is odd, and $2^{(n-2)/2}$ if n is even. On restriction to A_n, basic representations remain irreducible if n is even and split as a direct sum of two non-equivalent irreducibles if n is odd. In both cases the corresponding complex representations of \hat{A}_n are also called basic.
Finally, for both \tilde{S}_n and \tilde{A}_n, every irreducible constituent of Brauer reduction of a basic representation modulo p is called a (modular) basic representation. Dimensions of modular basic representations of \tilde{S}_n have been determined by Wales [11]. For $p > 2$, these are the same as for complex representations, unless p divides n, in which case they are twice as small. Moreover, in [11, Table III], Wales provides complete information concerning tensoring basic modular representations with sign, from which the dimensions of basic modular representations of \tilde{A}_n also follow, at least for $p > 2$. If $p = 2$, one can use Benson [1]. To summarize, we have:

Lemma 2.6. Let $d_n(p)$ be the dimension of a modular basic representation of \tilde{A}_n.

(i) Let $p > 2$ and $p | n$. Then $d_n(p) = 2^{(n-3)/2}$ if n is odd, and $2^{(n-2)/2}$ if n is even.

(ii) Let $p > 2$ and $p | n$. Then $d_n(p) = 2^{(n-3)/2}$ if n is odd, and $2^{(n-4)/2}$ if n is even.

(iii) Let $p = 2$. Then $d_n(2) = 2^{(n-3)/2}$ if n is odd, $2^{(n-2)/2}$ if $n \equiv 2 \pmod{4}$, and $2^{(n-4)/2}$ if $n \equiv 0 \pmod{4}$.

We cite another result of Wales for future reference:

Proposition 2.7. Let $n > 5$ and let ϕ be a faithful irreducible r of \tilde{A}_n. Then ϕ is basic if and only if all composition factors of $\phi|\tilde{A}_{n-1}$ are basic.

Proof. For \tilde{S}_n, a similar result is contained in the proof of [11, Theorem 8.1]. Then Clifford theory implies the result for \tilde{A}_n. \hfill \Box

Finally, we record a lemma of G. Higman which is often used below.

Lemma 2.8 ([2, Ch. IX, Theorem 1.10]). Let $G \subset GL(n, F)$ be a finite subgroup with abelian normal subgroup A of order coprime to p. Let $g \in G$ be an element of order p^k such that $g^{p^{k+1}} \not\in C_G(A)$. Then $\deg g = p^k$.

3. Main results

The following result of the second author provides us with an induction base for future arguments:

Lemma 3.1 ([12, Lemma 2.12]). Let $n < 2p$, let G be a quasi-simple group with $G/Z(G) \cong A_n$, and let $g \in G$ be an element with $g^p \in Z(G)$. Suppose that ϕ is a faithful irreducible representation of G such that $\deg \phi(g) < p$. Then one of the following holds:

(i) $Z(G) = 1$, $n = p$, and $\phi = \varepsilon_n$ with $\dim \phi = p - 2$;

(ii) $p = 3$, $G = \tilde{A}_5$, and $\dim \phi = 2$;

(iii) either $p = 5$, $G \cong \tilde{A}_6$, or $p = 5, 7, G \cong \tilde{A}_7$, and in both cases $\dim \phi = 4$;

(iv) $p = 5$, $G = \tilde{A}_8$ or \tilde{A}_9, and $\dim \phi = 8$;

(v) $p = 5$, $G = \tilde{A}_5$, and $\dim \phi = 2$;

(vi) $p = 5$, $G = \tilde{A}_5$, and $\dim \phi = 4$;

(vii) $p = 5$, $G = 3 \cdot A_6$ or $3 \cdot A_7$, and $\dim \phi = 3$;

(viii) $p = 7$, $G = 3 \cdot A_7$ or $6 \cdot A_7$, and $\dim \phi = 6$.

Moreover, in all the cases above, except (iv), the Jordan normal form of $\phi(g)$ has a single block, and in case (iv) it has two blocks of size 4.

Remark. The representations ϕ appearing in (ii)–(v) are basic.
Lemma 3.2. Let $G = A_n$ or \tilde{A}_n, with $n \geq 2p > 6$, and let $g \in G$ be an element of order p. If $p = 5$, suppose additionally that $\pi(g)$ is a 5-cycle. If $p = 7$ suppose additionally that either $G = A_n$ or $\pi(g)$ is a 7-cycle. If ϕ is a faithful irreducible representation of G with $\deg \phi(g) < p$, then $p = 5$, $G = \tilde{A}_n$, and ϕ is basic.

Proof. We may assume that $\pi(g)$ is a product of cycles of the form:

$$\pi(g) = (1, 2, \ldots, p)(p + 1, \ldots, 2p) \cdots$$

Recall that for $m < n$, A_m is assumed to be embedded into A_n as acting on the first m letters, unless otherwise stated. Define a subgroup H of G by requiring that $H \supseteq Z(G)$; (2) $\pi(H) \cong A_5$ if $p = 5$; $\pi(H) \cong A_8$ if $p = 7$ and $G = \tilde{A}_n$; $\pi(H) \cong A_p$ otherwise.

Set $X = \langle g, H \rangle$. Then we have $H \cong X/O_p(X)$ and $g = h_1g_1$, where $h = (1, 2, \ldots, p) \in H$ and $g_1 \in O_p(X)$. Let τ be a nontrivial composition factor of $\phi[X]$. Then $\tau(O_p(X)) = \text{Id}$; so we can also consider τ as a representation of H. We have $\tau(g) = \tau(h)$. In view of Lemma 2.1 $\deg \tau(g) < p$.

If $Z(G) = \{1\}$, then $Z(H) = \{1\}$, and so $\tau = \varepsilon_n$, thanks to Lemma 3.1. By induction on n it follows from Corollary 2.4 that $\phi = \varepsilon_n$. The result now follows from Lemma 2.8.

Finally, let $|Z(G)| = 2$. By Lemma 3.1 $p = 5$ and τ is basic. So Proposition 2.7 implies that ϕ is basic. \qed

Lemma 3.3. Let $G = \tilde{A}_n$ or A_n, and let $g \in G$ be an element of order $p > 3$ such that $\pi(g)$ has k nontrivial cycles. If $\deg \phi(g) < p$ for some faithful irreducible representation ϕ of G, then $k < 3$.

Proof. Suppose $k \geq 3$. We may assume that

$$\pi(g) = (1, 2, \ldots, p)(p + 1, p + 2, \ldots, 2p)(2p + 1, 2p + 2, \ldots, 3p) \cdots$$

Let A be the elementary abelian 3-subgroup of A_n of order 3^p generated by the commuting 3-cycles $(j, p + j, 2p + j)$ for $1 \leq j \leq p$. If $G = \tilde{A}_n$, let $B = \pi^{-1}(A)$. If $G = A_n$, take $B = A$. In both cases B is abelian of order prime to p, and $g \in N_G(B) \setminus C_G(B)$. Now we apply Lemma 2.8. \qed

Lemma 3.4. Let $G = \tilde{A}_n$ or A_n, and let $g \in G$ be an element of order $p = 5$ or 7. If $\deg \phi(g) < p$ for some faithful irreducible representation ϕ of G, then $\pi(g)$ is a p-cycle.

Proof. In view of Lemma 3.3 we may assume that

$$\pi(g) = (1, 2, \ldots, p)(p + 1, p + 2, \ldots, 2p).$$

Set $h_{ij} = (i, i + p)(j, j + p) \in A_n$ for $1 \leq i < j \leq p$. The subgroup H generated by the h_{ij} is abelian of order $2p^{-1}$. If $G = A_n$, we may apply Lemma 2.8 since $g \in N_G(H) \setminus C_G(H)$. Now, let $G = \tilde{A}_n$.

Assume first that $p = 7$. Observe that H can be considered as an $\mathbb{F}_2 \langle \pi(g) \rangle$-module via conjugation, and $\langle \pi(g) \rangle$ is a cyclic group of order p. Then the dimension of H over \mathbb{F}_2 is 6. Hence $\langle \pi(g) \rangle$ has an irreducible constituent M on H of dimension 3. In other words, $\pi(g)$ normalizes M, and $[\pi(g), M] \neq 1$. Let $L = \pi^{-1}(M)$. Then $|L| = 16$; hence it is not extraspecial. Now it is easy to deduce, using conjugation with g, that L is abelian. Since $g \in N_G(L) \setminus C_G(L)$, the result follows from Lemma 2.8.
Finally, let \(p = 5 \). Then \(g \) is contained in a group \(X \) isomorphic to the central product of two copies of \(A_5 \). Let \(\tau \) be an irreducible constituent of the restriction \(\phi \) to \(X \). Then \(\tau = \tau_1 \otimes \tau_2 \) where \(\tau_1 \) and \(\tau_2 \) are faithful representations of the respective copies of \(A_5 \). In view of Lemma 3.1 and [5, Chapter VIII, Theorem 2.7], \(\deg \tau(g) < 5 \) only if \(\dim \tau_1 = \dim \tau_2 = 2 \). This means that every irreducible constituent of the restriction of \(\phi \) to the naturally \(A_5 \)-basic representation is basic. By Proposition 7.7, \(\phi \) is basic. Then \(\deg \phi(g) = 5 \) by [8, Lemma 3.12].

Proof of Theorem 1.4. For \(p = 3 \), see Chermak [3], and for \(n < 2p \), see Lemma 3.1. Let \(p > 3 \) and \(n \geq 2p \). Then the “only-if” part follows from Lemmas 3.2, 3.4. For the “if” part it remains to show that \(d := \deg \phi(g) = 4 \) for \(\phi \) basic spin, \(p = 5 \), and \(\pi(g) \) a 5-cycle. Restricting to a natural subgroup \(t \) containing \(g \) and using Lemma 3.1, we see that \(d \geq 4 \). On the other hand, for complex representations of \(A_n \), a theorem similar to Theorem 1.2 has been proved in [13]. In particular, if \(g \in A_n \) is a 5-cycle, then \(\deg \beta(g) = 4 \) for complex basic spin representations \(\beta \). Since \(\phi \) is a constituent of a reduction of \(\beta \) modulo 5, we have \(d \leq 4 \).

Now we prove Theorem 1.2. The result is contained in Lemmas 3.5, 3.11.

Lemma 3.5. Theorem 1.2 is true for \(n = 5 \).

Proof. Since \(A_5 \) has no elements of order 4 we may assume that \(G = S_5 \). Then \(G \) has two nontrivial irreducible representations, both of dimension 4; see [5, Tables]. One of them is \(\varepsilon_5 \), for which \(\varepsilon_5 \oplus 1_{S_5} = \pi \), where \(\pi \) is the natural permutation representation of dimension 5. Clearly, \(\text{Jord } \pi(g) = \text{diag}(J_4, J_1) \); so \(\text{Jord } \varepsilon_5(g) = J_4 \). Another irreducible representation of \(G \) corresponds to the partition \((3,2)\), and so it is reducible on \(A_5 \), thanks to [1] or [2]. Therefore, \(\text{Jord } \phi(g^2) = \text{diag}(J_2, J_2) \) whence \(\text{Jord } \phi(g) = J_4 \).

Lemma 3.6. Let \(n \geq 5 \), \(G \in \{ A_n, S_n, 3 \cdot A_6, 3 \cdot S_6, 3 \cdot A_7, 3 \cdot S_7 \} \), and let \(g \in G \) be an element of order 4 fixing at least one point of the natural permutation set. Then \(\deg \phi(g) = 4 \) for any faithful irreducible representation \(\phi \) of \(G \).

Proof. We may assume that \(g \) transitively permutes \(1,2,3,4 \) and fixes 5. Let \(H := \text{Alt}\{1,2,3,4,5\} \), and let \(H \) be the preimage of \(H \) in \(G \). Set \(X := \langle g, H \rangle \). Since \(H \) contains no element of order 4, the restriction homomorphism \(h : X \to \text{Sym}\{1,2,3,4,5\} \cong S_5 \) is surjective. Let \(K = \ker h \). Clearly, \(K \) is central in \(X \). Since \(S_5 \) has no non-split central extension with center of order 3, we have \(X \cong Z(G) \times Y \) for some subgroup \(Y \) with \(g \in Y \). Let \(\tau \) be a composition factor of \(\phi Y \) with \(\dim \tau > 1 \). Then \(\tau(Y) \cong S_5 \). By Lemma 3.6, \(\deg \tau(g) = 4 \); hence \(\deg \phi(g) = 4 \) in view of Lemma 2.1.

Lemma 3.7. Theorem 1.2 is true for \(G = A_6 \) and \(S_6 \).

Proof. For \(g \in S_6 \setminus A_6 \) this follows from Lemma 3.6. So we may assume that \(G = A_6 \). We use [9]. Irreducible \(FG \)-modules of dimension 8 are projective. So the Jordan form of \(g \) on each of these modules is \(\text{diag}(J_4, J_4) \). Other nontrivial irreducible \(FG \)-modules are of dimension 4. Since \(A_6 \subseteq S_6 \cong Sp(4,2) \), one of them is the natural \(Sp(4,2) \)-module \(V \) restricted to \(A_6 \). Since the Jordan form of a unipotent element of \(Sp(4,2) \) does not have a block of size 3, the theorem is true for the natural representation. The second \(FG \)-module of dimension 4 is obtained from \(V \) by twisting with the outer automorphism \(\sigma = Sp(4,2) \). Since \(A_6 \) has
Lemma 3.8. Let \(n \geq 6, G = A_n \) or \(S_n \), and let \(g \in G \) be an element of order 4 having a 2-cycle in its cycle type. Then \(\deg \phi(g) = 4 \) for any faithful irreducible representation \(\phi \) of \(G \).

Proof. Clearly \(g \) normalizes a subgroup \(H \cong A_6 \) fixing \(n - 6 \) points such that \(g \) has a 2- and 4-cycle on the remaining 6 points. Then \(g = g_1g_2 \) where \(g_1, g_2 \in H \), and let \(\tau \) be a nontrivial composition factor of \(\phi(X) \). Since \(X/O_2(X) \cong H \), Lemma 3.7 gives \(\deg \tau(g) = 4 \). So by Lemma 2.1 \(\deg \phi(g) = 4 \).

Lemma 3.9. Theorem 1.2 is true for \(n = 8 \).

Proof. In view of Lemmas 3.8 and 3.6, we may assume that the cycle type of \(g \) is \((4, 4) \) and \(G = A_8 \cong SL(4, 2) \). Note that the group \(A_8 \) has 2 conjugacy classes of elements of order 4, corresponding to cycle types \((4, 4) \) and \((4, 4) \), and only the first one meets the subgroup \(A_6 \). The group \(SL(4, 2) \) has 2 conjugacy classes of elements of order 4, with Jordan forms \(J_4 \) and \(\text{diag}(J_3, J_1) \), and the second one does not meet \(Sp(4, 2) \). Since \(A_6 \cong Sp(4, 2)' \), we conclude that the class \((4, 4) \) corresponds to the class \(\text{diag}(J_3, J_1) \). So \(g \) belongs to the intermediate subgroup \(H \cong SL(3, 2) \).

Let \(\tau \) be an irreducible representation of \(H \). Then \(\tau \) is a restriction of a rational representation of \(\hat{H} \), the algebraic group of type \(A_2 \). The irreducible representations of \(\hat{H} \) are labelled by their highest weights \(a_1\omega_1 + a_2\omega_2 \), where \(a_1, a_2 \) are nonnegative integers and \(\omega_1, \omega_2 \) are the fundamental weights. It is well known that \(\tau \) is a restriction of one of the four irreducible representations of \(\hat{H} \) labelled by \(0, \omega_1, \omega_2, \omega_1 + \omega_2 \). The last one corresponds to the Steinberg module, whose restriction to \(H \) is projective, and so all Jordan blocks of \(g \) are of size 4. Two other representations are the natural and its dual. So the Jordan form of \(g \) on both of them is \(\text{diag}(J_3, J_1) \). Finally, corresponding to the zero highest weight we have the trivial representation.

Now, let \(\lambda = a_1\omega_1 + a_2\omega_2 + a_3\omega_3 \) be the highest weight of \(\phi \). By a theorem of Smith [10] (also proved independently by R. Dipper), the restriction \(\phi|H \) contains a direct summand \(\tau \) with highest weight \(a_1\omega_1 + a_2\omega_2 \). From the previous paragraph, we may assume that at least one of \(a_1, a_2 \) is zero. By duality, the same is true for \(a_2, a_3 \). So we are left with the cases \(\lambda \in \{\omega_1, \omega_2, \omega_3, \omega_1 + \omega_3\} \). The last one is the adjoint representation of \(G \). Clearly, its restriction to \(H \) contains a composition factor isomorphic to the adjoint representation of \(H \). Since the last representation is projective, it is a direct summand. Hence this case is ruled out. The cases \(\lambda = \omega_1, \omega_3 \) are obvious. Finally, the module corresponding to \(\lambda = \omega_2 \) is the exterior square of the natural module. So its restriction to \(H \) is a direct sum of the natural and dual natural modules; hence the Jordan blocks of \(\phi(g) \) are of size 3.

Lemma 3.10. Let \(G = A_n \) or \(S_n \), and let \(g \in G \) be an element of order 4 containing at least three 4-cycles. Then \(\deg \phi(g) = 4 \) for any faithful irreducible representation \(\phi \) of \(G \).

Proof. We may assume that
\[
g = (1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12) \ldots
\]
Set \(h_j := (j, j + 4, j + 8) \) for \(j = 1, 2, 3, 4 \), and \(H := \langle h_1, h_2, h_3, h_4 \rangle \). Then \(H \) is an abelian 3-group and \(g \in N_G(H) \). Moreover, \(g^2 \not\in C_G(H) \); so the result follows from Lemma 2.8.

Lemma 3.11. Theorem 1.2 is true for \(G = 3 \cdot A_6 \) and \(3 \cdot A_7 \).

Proof. For \(G = 3 \cdot A_7 \) see Lemma 3.6. Let \(G = 3 \cdot A_6 \). Then \(\dim \phi = 3 \) or 9; see [9]. In the former case, \(\deg \phi(g) = 3 \), since \(\deg \phi(g) < 3 \) implies \(\phi(g)^2 = 1 \), which is false. Let \(\dim \phi = 9 \). Observe that \(g^2 \) normalizes a cyclic group \((c) \) of order 5. Set \(X := (g^2, c) \). Since \(g^2 c g^{-2} = c^{-1} \) and the multiplicity of every eigenvalue \(\alpha \neq 1 \) of \(\phi(c) \) is 2 (see [9]), it follows that \(\phi(X) \) has four composition factors of dimension 2 and one composition factor of dimension 1. Therefore Jord \(g^2 = \text{diag}(J_2, J_2, J_2, J_2, J_1) \), whence Jord \(g = \text{diag}(J_4, J_4, J_1) \).

References

Department of Mathematics, University of Oregon, Eugene, Oregon 97403

E-mail address: klesh@math.uoregon.edu

School of Mathematics, University of East Anglia, Norwich NR4 7TJ, England

E-mail address: a.zalesskii@uea.ac.uk

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use