The norm of a symmetric elementary operator

Author:
Bojan Magajna

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1747-1754

MSC (2000):
Primary 47B47

DOI:
https://doi.org/10.1090/S0002-9939-03-07248-4

Published electronically:
October 8, 2003

MathSciNet review:
2051136

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The norm of the operator on (or on any prime C-algebra ) is computed for all and is shown to be equal to the completely bounded norm.

**1.**E. G. Effros and Z.-J. Ruan,*Operator spaces*, London Math. Soc. Monographs, New Series**23**, Oxford University Press, Oxford, 2000. MR**2002a:46082****2.**L. Fialkow,*Structural properties of elementary operators*, in Elementary Operators and Applications (M. Mathieu, ed.), (Proc. Internat. Workshop, Blaubeuren, 1991), World Scientific, River Edge, NJ, 1992, pp. 55-113. MR**93i:47042****3.**P. R. Halmos,*A Hilbert space problem book*, Graduate Texts in Mathematics**19**, Springer-Verlag, Berlin, 1982. MR**84e:47001****4.**R. V. Kadison and J. R. Ringrose,*Fundamentals of the theory of operator algebras, Vol. 1*, Academic Press, New York, 1983. MR**85j:46099****5.**B. Magajna,*The Haagerup norm on the tensor product of operator modules*, J. Funct. Anal.**129**(1995), 325-348. MR**96e:46075****6.**B. Magajna and A. Turnsek,*On the norm of symmetrised two-sided multiplications*, Bull. Austral. Math. Soc.**67**(2003), 27-38.**7.**M. Mathieu,*Properties of the product of two derivations of a C**-algebra*, Canad. Math. Bull.**32**(1989), 490-497. MR**90k:46140****8.**M. Mathieu,*The norm problem for elementary operators*, Recent progress in functional analysis (Valencia, 2000), 363-368, North-Holland Math. Stud.**189**, North-Holland, Amsterdam, 2001. MR**2002g:47071****9.**V. I. Paulsen,*Completely bounded maps and dilations,*Pitman Research Notes in Math.**146**, Longman Scientific and Technical, Harlow, 1986. MR**88h:46111****10.**R. R. Smith,*Completely bounded module maps and the Haagerup tensor product*, J. Funct. Anal.**102**(1991), 156-175. MR**93a:46115****11.**L. L. Stachó and B. Zalar,*On the norm of Jordan elementary operators in standard operator algebras*, Publ. Math. Debrecen**49**(1996), 127-134. MR**97k:47043****12.**L. L. Stachó and B. Zalar,*Uniform primeness of the Jordan algebra of symmetric operators*, Proc. Amer. Math. Soc.**126**(1998), 2241-2247. MR**99f:46101****13.**J. Stampfli,*The norm of a derivation*, Pacific J. Math.**33**(1970), 737-747. MR**42:861****14.**R. M. Timoney,*A note on positivity of elementary operators*, Bull. London Math. Soc.**32**(2000), 229-234. MR**2000j:47066**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47B47

Retrieve articles in all journals with MSC (2000): 47B47

Additional Information

**Bojan Magajna**

Affiliation:
Department of Mathematics, University of Ljubljana, Jadranska 19, Ljubljana 1000, Slovenia

Email:
Bojan.Magajna@fmf.uni-lj.si

DOI:
https://doi.org/10.1090/S0002-9939-03-07248-4

Keywords:
Elementary operator,
completely bounded map

Received by editor(s):
July 19, 2002

Received by editor(s) in revised form:
February 7, 2003

Published electronically:
October 8, 2003

Additional Notes:
Supported by the Ministry of Science and Education of Slovenia

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2003
American Mathematical Society