Cohomology and finite subgroups of profinite groups

Authors:
Pham Anh Minh and Peter Symonds

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1581-1588

MSC (2000):
Primary 20J06, 17B50

DOI:
https://doi.org/10.1090/S0002-9939-03-07250-2

Published electronically:
November 4, 2003

MathSciNet review:
2051117

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove two theorems linking the cohomology of a pro- group with the conjugacy classes of its finite subgroups.

The number of conjugacy classes of elementary abelian -subgroups of is finite if and only if the ring is finitely generated modulo nilpotent elements.

If the ring is finitely generated, then the number of conjugacy classes of finite subgroups of is finite.

**1.**K. S. Brown,*Cohomology of groups*, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, Berlin, 1982. MR**83k:20002****2.**J. D. Dixon, M.P.F. du Sautoy, A. Mann, and D. Segal,*Analytic pro-**groups (2nd edition)*, London Mathematical Society Lecture Note Series, vol. 157, Cambridge University Press, Cambridge, 1999. MR**94e:20037****3.**W. G. Dwyer and C. Wilkerson,*Smith Theory and the functor*, Comment. Math. Helvetici**66**(1991), 1-17. MR**92i:55006****4.**L. Evens,*The cohomology of groups*, Oxford Mathematical Monographs, Clarendon Press, 1991. MR**93i:20059****5.**H.-W. Henn,*Centralizers of elementary abelian**-subgroups and mod-**cohomology of profinite groups*, Duke Math. J.**91**(1998), 561-585. MR**99b:20083****6.**H.-W. Henn, J. Lannes, and L. Schwarz,*The categories of unstable modules and unstable algebras over the Steenrod algebra modulo nilpotent objects*, Amer. Jour. Math.**115**(1993), 1053-1106. MR**94i:55024****7.**D. Quillen,*A cohomological criterion for**-nilpotence*, J. Pure Appl. Algebra**1**(1971), 361-372. MR**47:6886****8.**D. Quillen,*The spectrum of an equivariant cohomology ring II*, Ann. Math.**94**(1971), 573-602. MR**45:7743****9.**C. Scheiderer,*Farrell cohomology and Brown theorems for profinite groups*, Manuscripta Math.**91**(1996), 247-281. MR**97j:20050**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
20J06,
17B50

Retrieve articles in all journals with MSC (2000): 20J06, 17B50

Additional Information

**Pham Anh Minh**

Affiliation:
Department of Mathematics, College of Science, University of Hue, Dai hoc Khoa hoc, Hue, Vietnam

Address at time of publication:
Inst. Hautes Études Sci., Le Bois-Marie, 35 Route de Chartres, F-91440 Bures-sur-Yvette, France

Email:
paminh@dng.vnn.vn

**Peter Symonds**

Affiliation:
Department of Mathematics, U.M.I.S.T., P.O. Box 88, Manchester M60 1QD, England

Email:
Peter.Symonds@umist.ac.uk

DOI:
https://doi.org/10.1090/S0002-9939-03-07250-2

Received by editor(s):
November 1, 2002

Received by editor(s) in revised form:
February 9, 2003

Published electronically:
November 4, 2003

Communicated by:
Stephen D. Smith

Article copyright:
© Copyright 2003
American Mathematical Society