Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Derived length and character degrees of solvable groups


Author: Alexander Moretó
Journal: Proc. Amer. Math. Soc. 132 (2004), 1599-1604
MSC (2000): Primary 20C15, 20D15
DOI: https://doi.org/10.1090/S0002-9939-03-07251-4
Published electronically: November 14, 2003
MathSciNet review: 2051119
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the derived length of a solvable group is bounded in terms of certain invariants associated to the set of character degrees and improve some of the known bounds. We also bound the derived length of a Sylow $p$-subgroup of a solvable group by the number of different $p$-parts of the character degrees of the whole group.


References [Enhancements On Off] (What's this?)

  • 1. A. K. FEYZIOGLU, Charaktergrade und die Kommutatorlänge in auflösbaren Gruppen, J. Algebra 126 (1989), 225-251. MR 90j:20015
  • 2. D. GLUCK AND T. R. WOLF, Brauer's height conjecture for $p$-solvable groups, Trans. Amer. Math. Soc. 282 (1984), 137-152. MR 85i:20014
  • 3. J. E. HAMBLIN, ``On Solvable Groups Satisfying the Two-Prime Hypothesis", Ph. D. Thesis, University of Wisconsin, Madison, 2002.
  • 4. B. HUPPERT, ``Endliche Gruppen I", Springer-Verlag, Berlin, 1967. MR 37:302
  • 5. B. HUPPERT, Inequalities for character degrees of solvable groups, Arch. Math. (Basel) 46 (1986), 387-392. MR 87h:20018
  • 6. B. HUPPERT, A remark on the character-degrees of some $p$-groups, Arch. Math. (Basel) 59 (1992), 313-318. MR 93g:20016
  • 7. B. HUPPERT AND N. BLACKBURN, ``Finite Groups II", Springer-Verlag, Berlin, 1982. MR 84i:20001a
  • 8. I. M. ISAACS, The $p$-parts of character degrees in $p$-solvable groups, Pacific J. Math. 36 (1971), 677-691. MR 47:1927
  • 9. I. M. ISAACS, Character degrees and derived length of a solvable group, Canadian J. Math. 27 (1975), 146-151. MR 50:10039
  • 10. I. M. ISAACS, ``Character Theory of Finite Groups'', Dover, New York, 1994.
  • 11. I. M. ISAACS AND G. KNUTSON, Irreducible character degrees and normal subgroups, J. Algebra 199 (1998), 302-326. MR 98m:20013
  • 12. I. M. ISAACS AND M. L. LEWIS, Derived lengths of solvable groups satisfying the one-prime hypothesis II, Comm. Algebra 29 (2001), 2285-2292. MR 2002e:20016
  • 13. T. M. KELLER, Orbit sizes and character degrees, Pacific J. Math. 187 (1999), 317-332. MR 99m:20013
  • 14. T. M. KELLER, Orbit sizes and character degrees II, J. reine angew. Math. 516 (1999), 27-114. MR 2001a:20014
  • 15. T. M. KELLER, Orbit sizes and character degrees III, J. reine angew. Math. 545 (2002), 1-17. MR 2003a:20009
  • 16. U. LEISERING AND O. MANZ, A note on character degrees of solvable groups, Arch. Math. 48 (1987), 32-35. MR 87m:20027
  • 17. M. L. LEWIS, Solvable groups having almost relatively prime distinct irreducible character degrees, J. Algebra 174 (1995), 197-216. MR 96d:20009
  • 18. M. L. LEWIS, Derived lengths of solvable groups satisfying the one-prime hypothesis, Comm. Algebra 26 (1998), 2419-2428. MR 99d:20011
  • 19. M. L. LEWIS, Derived lengths of solvable groups satisfying the one-prime hypothesis III, Comm. Algebra 29 (2001), 5755-5765. MR 2003b:20028
  • 20. M. L. LEWIS, The number of irreducible character degrees of solvable groups satisfying the one-prime hypothesis, preprint.
  • 21. O. MANZ AND T. R. WOLF, ``Representations of Solvable Groups", Cambridge University Press, Cambridge, 1993. MR 95c:20013
  • 22. A. MORETÓ AND T. R. WOLF, Orbit sizes, character degrees and Sylow subgroups, to appear in Advances in Mathematics.
  • 23. K. PODOSKI AND B. SZEGEDY, Bounds in groups with finite abelian coverings or with finite derived groups, J. Group Theory 5 (2002), 443-452. MR 2003i:20052
  • 24. M. C. SLATTERY, Character degrees and derived length in $p$-groups, Glasgow Math. J. 30 (1988), 221-230. MR 89g:20017

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20C15, 20D15

Retrieve articles in all journals with MSC (2000): 20C15, 20D15


Additional Information

Alexander Moretó
Affiliation: Departament d’Àlgebra, Universitat de València, 46100 Burjassot. València, Spain
Email: mtbmoqua@lg.ehu.es

DOI: https://doi.org/10.1090/S0002-9939-03-07251-4
Received by editor(s): December 5, 2002
Received by editor(s) in revised form: February 13, 2003
Published electronically: November 14, 2003
Additional Notes: This research was supported by the Basque Government, the Spanish Ministerio de Ciencia y Tecnología, grant BFM2001-0180, and the FEDER
Communicated by: Stephen D. Smith
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society