Derived length and character degrees of solvable groups

Author:
Alexander Moretó

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1599-1604

MSC (2000):
Primary 20C15, 20D15

DOI:
https://doi.org/10.1090/S0002-9939-03-07251-4

Published electronically:
November 14, 2003

MathSciNet review:
2051119

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the derived length of a solvable group is bounded in terms of certain invariants associated to the set of character degrees and improve some of the known bounds. We also bound the derived length of a Sylow -subgroup of a solvable group by the number of different -parts of the character degrees of the whole group.

**1.**A. K. FEYZIOGLU,*Charaktergrade und die Kommutatorlänge in auflösbaren Gruppen*, J. Algebra**126**(1989), 225-251. MR**90j:20015****2.**D. GLUCK AND T. R. WOLF,*Brauer's height conjecture for**-solvable groups*, Trans. Amer. Math. Soc.**282**(1984), 137-152. MR**85i:20014****3.**J. E. HAMBLIN, ``On Solvable Groups Satisfying the Two-Prime Hypothesis", Ph. D. Thesis, University of Wisconsin, Madison, 2002.**4.**B. HUPPERT, ``Endliche Gruppen I", Springer-Verlag, Berlin, 1967. MR**37:302****5.**B. HUPPERT,*Inequalities for character degrees of solvable groups*, Arch. Math. (Basel)**46**(1986), 387-392. MR**87h:20018****6.**B. HUPPERT,*A remark on the character-degrees of some**-groups*, Arch. Math. (Basel)**59**(1992), 313-318. MR**93g:20016****7.**B. HUPPERT AND N. BLACKBURN, ``Finite Groups II", Springer-Verlag, Berlin, 1982. MR**84i:20001a****8.**I. M. ISAACS,*The**-parts of character degrees in**-solvable groups*, Pacific J. Math.**36**(1971), 677-691. MR**47:1927****9.**I. M. ISAACS,*Character degrees and derived length of a solvable group*, Canadian J. Math.**27**(1975), 146-151. MR**50:10039****10.**I. M. ISAACS, ``Character Theory of Finite Groups'', Dover, New York, 1994.**11.**I. M. ISAACS AND G. KNUTSON,*Irreducible character degrees and normal subgroups*, J. Algebra**199**(1998), 302-326. MR**98m:20013****12.**I. M. ISAACS AND M. L. LEWIS,*Derived lengths of solvable groups satisfying the one-prime hypothesis II*, Comm. Algebra**29**(2001), 2285-2292. MR**2002e:20016****13.**T. M. KELLER,*Orbit sizes and character degrees*, Pacific J. Math.**187**(1999), 317-332. MR**99m:20013****14.**T. M. KELLER,*Orbit sizes and character degrees II*, J. reine angew. Math.**516**(1999), 27-114. MR**2001a:20014****15.**T. M. KELLER,*Orbit sizes and character degrees III*, J. reine angew. Math.**545**(2002), 1-17. MR**2003a:20009****16.**U. LEISERING AND O. MANZ,*A note on character degrees of solvable groups*, Arch. Math.**48**(1987), 32-35. MR**87m:20027****17.**M. L. LEWIS,*Solvable groups having almost relatively prime distinct irreducible character degrees*, J. Algebra**174**(1995), 197-216. MR**96d:20009****18.**M. L. LEWIS,*Derived lengths of solvable groups satisfying the one-prime hypothesis*, Comm. Algebra**26**(1998), 2419-2428. MR**99d:20011****19.**M. L. LEWIS,*Derived lengths of solvable groups satisfying the one-prime hypothesis III*, Comm. Algebra**29**(2001), 5755-5765. MR**2003b:20028****20.**M. L. LEWIS,*The number of irreducible character degrees of solvable groups satisfying the one-prime hypothesis*, preprint.**21.**O. MANZ AND T. R. WOLF, ``Representations of Solvable Groups", Cambridge University Press, Cambridge, 1993. MR**95c:20013****22.**A. MORETÓ AND T. R. WOLF,*Orbit sizes, character degrees and Sylow subgroups*, to appear in Advances in Mathematics.**23.**K. PODOSKI AND B. SZEGEDY,*Bounds in groups with finite abelian coverings or with finite derived groups*, J. Group Theory**5**(2002), 443-452. MR**2003i:20052****24.**M. C. SLATTERY,*Character degrees and derived length in**-groups*, Glasgow Math. J.**30**(1988), 221-230. MR**89g:20017**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
20C15,
20D15

Retrieve articles in all journals with MSC (2000): 20C15, 20D15

Additional Information

**Alexander Moretó**

Affiliation:
Departament d’Àlgebra, Universitat de València, 46100 Burjassot. València, Spain

Email:
mtbmoqua@lg.ehu.es

DOI:
https://doi.org/10.1090/S0002-9939-03-07251-4

Received by editor(s):
December 5, 2002

Received by editor(s) in revised form:
February 13, 2003

Published electronically:
November 14, 2003

Additional Notes:
This research was supported by the Basque Government, the Spanish Ministerio de Ciencia y Tecnología, grant BFM2001-0180, and the FEDER

Communicated by:
Stephen D. Smith

Article copyright:
© Copyright 2003
American Mathematical Society