A generalization of a result of Kazhdan and Lusztig
Authors:
Jeffrey D. Adler and Stephen DeBacker
Journal:
Proc. Amer. Math. Soc. 132 (2004), 18611868
MSC (2000):
Primary 22E35, 22E65; Secondary 17B45, 20G05, 20G15, 22E50, 20G25
Published electronically:
December 1, 2003
MathSciNet review:
2051152
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Kazhdan and Lusztig showed that every topologically nilpotent, regular semisimple orbit in the Lie algebra of a simple, split group over the field is, in some sense, close to a regular nilpotent orbit. We generalize this result to a setting that includes most quasisplit adic groups.
 1.
J. D. Adler and S. DeBacker, MurnaghanKirillov theory for supercuspidal representations of tame general linear groups, submitted.
 2.
Jeffrey
D. Adler and Stephen
DeBacker, Some applications of BruhatTits theory to harmonic
analysis on the Lie algebra of a reductive 𝑝adic group,
Michigan Math. J. 50 (2002), no. 2, 263–286. MR 1914065
(2003g:22016), http://dx.doi.org/10.1307/mmj/1028575734
 3.
P.
Bala and R.
W. Carter, Classes of unipotent elements in simple algebraic
groups. II, Math. Proc. Cambridge Philos. Soc. 80
(1976), no. 1, 1–17. MR 0417307
(54 #5363b)
 4.
Armand
Borel, Linear algebraic groups, 2nd ed., Graduate Texts in
Mathematics, vol. 126, SpringerVerlag, New York, 1991. MR 1102012
(92d:20001)
 5.
F.
Bruhat and J.
Tits, Groupes réductifs sur un corps local, Inst.
Hautes Études Sci. Publ. Math. 41 (1972),
5–251 (French). MR 0327923
(48 #6265)
 6.
Stephen
DeBacker, Parametrizing nilpotent orbits via BruhatTits
theory, Ann. of Math. (2) 156 (2002), no. 1,
295–332. MR 1935848
(2003i:20086), http://dx.doi.org/10.2307/3597191
 7.
D.
Kazhdan and G.
Lusztig, Fixed point varieties on affine flag manifolds,
Israel J. Math. 62 (1988), no. 2, 129–168. MR 947819
(89m:14025), http://dx.doi.org/10.1007/BF02787119
 8.
Bertram
Kostant, Lie group representations on polynomial rings, Amer.
J. Math. 85 (1963), 327–404. MR 0158024
(28 #1252)
 9.
Robert
E. Kottwitz, Transfer factors for Lie
algebras, Represent. Theory 3 (1999), 127–138
(electronic). MR
1703328 (2000g:22028), http://dx.doi.org/10.1090/S1088416599000680
 10.
Allen
Moy and Gopal
Prasad, Jacquet functors and unrefined minimal
𝐾types, Comment. Math. Helv. 71 (1996),
no. 1, 98–121. MR 1371680
(97c:22021), http://dx.doi.org/10.1007/BF02566411
 11.
JeanPierre
Serre, Galois cohomology, SpringerVerlag, Berlin, 1997.
Translated from the French by Patrick Ion and revised by the author. MR 1466966
(98g:12007)
 12.
T.
A. Springer, The unipotent variety of a semisimple group,
Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay,
1968), Oxford Univ. Press, London, 1969, pp. 373–391. MR 0263830
(41 #8429)
 13.
T.
A. Springer, Linear algebraic groups, 2nd ed., Progress in
Mathematics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998.
MR
1642713 (99h:20075)
 14.
Robert
Steinberg, Regular elements of semisimple algebraic groups,
Inst. Hautes Études Sci. Publ. Math. 25 (1965),
49–80. MR
0180554 (31 #4788)
 15.
Robert
Steinberg, Torsion in reductive groups, Advances in Math.
15 (1975), 63–92. MR 0354892
(50 #7369)
 16.
JiuKang
Yu, Construction of tame supercuspidal
representations, J. Amer. Math. Soc.
14 (2001), no. 3,
579–622 (electronic). MR 1824988
(2002f:22033), http://dx.doi.org/10.1090/S0894034701003630
 1.
 J. D. Adler and S. DeBacker, MurnaghanKirillov theory for supercuspidal representations of tame general linear groups, submitted.
 2.
 J. D. Adler and S. DeBacker, Some applications of BruhatTits theory to harmonic analysis on the Lie algebra of a reductive adic group, Michigan Math. J. 50 (2002), no. 2, 263286. MR 2003g:22016
 3.
 P. Bala and R. W. Carter, Classes of unipotent elements in simple algebraic groups. II, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 1, 117. MR 54:5363b
 4.
 A. Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, SpringerVerlag, New York, 1991. MR 92d:20001
 5.
 F. Bruhat and J. Tits, Groupes réductifs sur un corps local I: Données radicielles valuées, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5251. MR 48:6265
 6.
 S. DeBacker, Parametrizing nilpotent orbits via BruhatTits theory, Ann. Math. 156 (2002), 295332. MR 2003i:20086
 7.
 D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), no. 2, 129168. MR 89m:14025
 8.
 B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327404. MR 28:1252
 9.
 R. E. Kottwitz, Transfer factors for Lie algebras, Represent. Theory 3 (1999), 127138 (electronic). MR 2000g:22028
 10.
 A. Moy and G. Prasad, Jacquet functors and unrefined minimal types, Comment. Math. Helvetici 71 (1996), 98121. MR 97c:22021
 11.
 J.P. Serre, Galois cohomology, SpringerVerlag, Berlin, 1997, Translated from the French by Patrick Ion and revised by the author. MR 98g:12007
 12.
 T. A. Springer, The unipotent variety of a semisimple group, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 373391. MR 41:8429
 13.
 T. A. Springer, Linear algebraic groups, 2nd edition, Birkhäuser, Boston, 1998. MR 99h:20075
 14.
 R. Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 4980. MR 31:4788
 15.
 R. Steinberg, Torsion in reductive groups, Advances in Math. 15 (1975), 6392. MR 50:7369
 16.
 J.K. Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), no. 3, 579622. MR 2002f:22033
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
22E35,
22E65,
17B45,
20G05,
20G15,
22E50,
20G25
Retrieve articles in all journals
with MSC (2000):
22E35,
22E65,
17B45,
20G05,
20G15,
22E50,
20G25
Additional Information
Jeffrey D. Adler
Affiliation:
Department of Theoretical and Applied Mathematics, The University of Akron, Akron, Ohio 443254002
Email:
adler@uakron.edu
Stephen DeBacker
Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Address at time of publication:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 481091109
Email:
debacker@math.harvard.edu, smdbackr@umich.edu
DOI:
http://dx.doi.org/10.1090/S0002993903072617
PII:
S 00029939(03)072617
Keywords:
$p$adic,
Lie algebra,
stability
Received by editor(s):
September 23, 2002
Received by editor(s) in revised form:
February 26, 2003
Published electronically:
December 1, 2003
Additional Notes:
The authors were partially supported by the National Security Agency (#MDA9040210020) and the National Science Foundation (Grant No. 0200542), respectively. This work was begun while the authors were attending workshops in Banff in 2001–2002 sponsored by the Mathematical Sciences Research Institute and the Pacific Institute for the Mathematical Sciences, and completed while the authors were visiting the Institute for Mathematical Sciences (IMS) at the National University of Singapore (NUS) in 2002, visits supported by IMS and NUS
Communicated by:
Rebecca Herb
Article copyright:
© Copyright 2003
American Mathematical Society
