A linear function associated to asymptotic prime divisors

Authors:
Daniel Katz and Eric West

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1589-1597

MSC (2000):
Primary 13A02, 13A15, 13A30, 13E05

Published electronically:
October 21, 2003

MathSciNet review:
2051118

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a Noetherian standard -graded ring and finitely generated, -graded -modules. Let be finitely many homogeneous ideals of . We show that there exist linear functions such that the associated primes over of and are stable whenever satisfies and , respectively.

**[B]**M. Brodmann,*Asymptotic stability of 𝐴𝑠𝑠(𝑀/𝐼ⁿ𝑀)*, Proc. Amer. Math. Soc.**74**(1979), no. 1, 16–18. MR**521865**, 10.1090/S0002-9939-1979-0521865-8**[CHT]**S. Dale Cutkosky, Jürgen Herzog, and Ngô Viêt Trung,*Asymptotic behaviour of the Castelnuovo-Mumford regularity*, Compositio Math.**118**(1999), no. 3, 243–261. MR**1711319**, 10.1023/A:1001559912258**[KMR]**Daniel Katz, Stephen McAdam, and L. J. Ratliff Jr.,*Prime divisors and divisorial ideals*, J. Pure Appl. Algebra**59**(1989), no. 2, 179–186. MR**1007920**, 10.1016/0022-4049(89)90133-3**[Ko]**Vijay Kodiyalam,*Asymptotic behaviour of Castelnuovo-Mumford regularity*, Proc. Amer. Math. Soc.**128**(2000), no. 2, 407–411. MR**1621961**, 10.1090/S0002-9939-99-05020-0**[KS]**Alan K. Kingsbury and Rodney Y. Sharp,*Asymptotic behaviour of certain sets of prime ideals*, Proc. Amer. Math. Soc.**124**(1996), no. 6, 1703–1711. MR**1328355**, 10.1090/S0002-9939-96-03400-4**[Mc]**Stephen McAdam,*Asymptotic prime divisors*, Lecture Notes in Mathematics, vol. 1023, Springer-Verlag, Berlin, 1983. MR**722609****[Sh]**R. Y. Sharp,*Injective modules and linear growth of primary decompositions*, Proc. Amer. Math. Soc.**128**(2000), no. 3, 717–722. MR**1641105**, 10.1090/S0002-9939-99-05170-9**[Si]**Anurag K. Singh,*𝑝-torsion elements in local cohomology modules*, Math. Res. Lett.**7**(2000), no. 2-3, 165–176. MR**1764314**, 10.4310/MRL.2000.v7.n2.a3**[Sw]**Irena Swanson,*Powers of ideals. Primary decompositions, Artin-Rees lemma and regularity*, Math. Ann.**307**(1997), no. 2, 299–313. MR**1428875**, 10.1007/s002080050035**[T]**Emanoil Theodorescu,*Derived functors and Hilbert polynomials*, Math. Proc. Cambridge Philos. Soc.**132**(2002), no. 1, 75–88. MR**1866325**, 10.1017/S0305004101005412**[W]**E. West,*Primes associated to multigraded modules*, J. Algebra (to appear).**[Y]**Y. Yao, Ph. D. Thesis, University of Kansas (2002).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
13A02,
13A15,
13A30,
13E05

Retrieve articles in all journals with MSC (2000): 13A02, 13A15, 13A30, 13E05

Additional Information

**Daniel Katz**

Affiliation:
Department of Mathematics, University of Kansas, Lawrence, Kansas 66045

Email:
dlk@math.ukans.edu

**Eric West**

Affiliation:
Department of Mathematics and Computer Science, Benedictine College, Atchison, Kansas 66002

Email:
ewest@benedictine.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-03-07282-4

Keywords:
Associated prime,
multi-graded module,
homology module

Received by editor(s):
April 8, 2002

Received by editor(s) in revised form:
February 13, 2003

Published electronically:
October 21, 2003

Communicated by:
Bernd Ulrich

Article copyright:
© Copyright 2003
American Mathematical Society