A linear function associated to asymptotic prime divisors

Authors:
Daniel Katz and Eric West

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1589-1597

MSC (2000):
Primary 13A02, 13A15, 13A30, 13E05

DOI:
https://doi.org/10.1090/S0002-9939-03-07282-4

Published electronically:
October 21, 2003

MathSciNet review:
2051118

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a Noetherian standard -graded ring and finitely generated, -graded -modules. Let be finitely many homogeneous ideals of . We show that there exist linear functions such that the associated primes over of and are stable whenever satisfies and , respectively.

**[B]**M. Brodmann,*Asymptotic stability of*, Proc. Amer. Math. Soc.**74**(1979), 16-18. MR**80c:13012****[CHT]**S. Cutkosky, J. Herzog, and N. Trung,*Asymptotic behaviour of Castelnuovo-Mumford regularity*, Compositio Math.**118**(1999), 243-261. MR**2000f:13037****[KMR]**D. Katz, S. McAdam and L. J. Ratliff, Jr.,*Prime divisors and divisorial ideals*, J. Pure Appl. Algebra**59**(1989), 179-186. MR**90g:13030****[Ko]**V. Kodiyalam,*Asymptotic behaviour of Castelnuovo-Mumford regularity*, Proc. Amer. Math. Soc.**128**(2000), 407-411. MR**2000c:13027****[KS]**A. K. Kingsbury and R. Y. Sharp,*Asymptotic behaviour of certain sets of prime ideals*, Proc. Amer. Math. Soc.**124**(1996), 1703-1711. MR**96h:13003****[Mc]**S. McAdam,*Asymptotic Prime Divisors*, Lecture Notes in Math., vol. 1023, Springer-Verlag, New York, 1983. MR**85f:13018****[Sh]**R. Y. Sharp,*Injective modules and linear growth of primary decompositions*, Proc. Amer. Math. Soc.**128**(2000), 717-722. MR**2000e:13004****[Si]**A. Singh,*-torsion elements in local cohomology modules*, Math. Res. Lett.**7**(2000), 165-176. MR**2001g:13039****[Sw]**I. Swanson,*Powers of ideals. Primary decomposition, Artin-Rees lemma and regularity*, Math. Ann.**307**(1997), 299-313. MR**97j:13005****[T]**E. Theodorescu,*Derived functors and Hilbert polynomials*, Math. Proc. Cambridge Philos. Soc.**132**(2002), 75-88. MR**2002j:13018****[W]**E. West,*Primes associated to multigraded modules*, J. Algebra (to appear).**[Y]**Y. Yao, Ph. D. Thesis, University of Kansas (2002).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
13A02,
13A15,
13A30,
13E05

Retrieve articles in all journals with MSC (2000): 13A02, 13A15, 13A30, 13E05

Additional Information

**Daniel Katz**

Affiliation:
Department of Mathematics, University of Kansas, Lawrence, Kansas 66045

Email:
dlk@math.ukans.edu

**Eric West**

Affiliation:
Department of Mathematics and Computer Science, Benedictine College, Atchison, Kansas 66002

Email:
ewest@benedictine.edu

DOI:
https://doi.org/10.1090/S0002-9939-03-07282-4

Keywords:
Associated prime,
multi-graded module,
homology module

Received by editor(s):
April 8, 2002

Received by editor(s) in revised form:
February 13, 2003

Published electronically:
October 21, 2003

Communicated by:
Bernd Ulrich

Article copyright:
© Copyright 2003
American Mathematical Society