Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Note on quantum unique ergodicity

Author: Steve Zelditch
Journal: Proc. Amer. Math. Soc. 132 (2004), 1869-1872
MSC (2000): Primary 58J50, 58J40, 35P99, 81S10
Published electronically: November 21, 2003
MathSciNet review: 2051153
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that (near) off-diagonal matrix elements $\langle A \varphi_i, \varphi_j \rangle$ ($i \not= j$) of pseudodifferential operators relative to eigenfunctions of quantum unique- ly ergodic Laplacians vanish as the eigenvalues tend to infinity. It follows that QUE systems cannot have quasi-modes with singular limits and a bounded number of essential frequencies, as is believed to occur for the stadium and other examples.

References [Enhancements On Off] (What's this?)

  • [BSS] A. Backer, R. Schubert, and P. Stifter, On the number of bouncing ball modes in billiards, J. Phys. A 30 (1997), no. 19, 6783-6795.
  • [BL] J. Bourgain and E. Lindenstrauss, Entropy of Quantum Limits, Commun. Math. Phys. 233 (2003), 153-171.
  • [BZ1] N. Burq and M. Zworski, Control in the presence of a black box, arxiv preprint math.AP/0304184 (2003).
  • [BZ2] N. Burq and M. Zworski, Bouncing ball modes and quantum chaos, arxiv preprint math.AP/0306278 (2003).
  • [CdV] Yves Colin de Verdière, Quasi-modes sur les variétés Riemanniennes, Invent. Math. 43 (1977), no. 1, 15–52 (French). MR 0501196,
  • [D] H. G. Donnelly, Quantum unique ergodicity, Proc. Amer. Math. Soc. 131 (2003), no. 9, 2945-2951.
  • [FN] F. Faure and S. Nonnenmacher, On the maximal scarring for quantum cat map eigenstates, arxiv preprint nlin.CD/0304031 (2003).
  • [FND] F. Faure, S. Nonnenmacher, and S. De Bievre, Scarred eigenstates for quantum cat maps of minimal periods, arxiv preprint nlin.CD/0207060 (2003), Comm. Math. Phys. 239 (2003), 449-492.
  • [H] Eric J. Heller, Wavepacket dynamics and quantum chaology, Chaos et physique quantique (Les Houches, 1989) North-Holland, Amsterdam, 1991, pp. 547–664. MR 1188425
  • [HO] Patrick W. O’Connor and Eric J. Heller, Quantum localization for a strongly classically chaotic system, Phys. Rev. Lett. 61 (1988), no. 20, 2288–2291. MR 966831,
  • [L] E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, preprint, 2003.
  • [RS] Zeév Rudnick and Peter Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994), no. 1, 195–213. MR 1266075
  • [S] Peter Sarnak, Arithmetic quantum chaos, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 183–236. MR 1321639
  • [W] Scott A. Wolpert, The modulus of continuity for Γ₀(𝑚)\ℍ semi-classical limits, Comm. Math. Phys. 216 (2001), no. 2, 313–323. MR 1814849,
  • [Z] Steven Zelditch, Quantum transition amplitudes for ergodic and for completely integrable systems, J. Funct. Anal. 94 (1990), no. 2, 415–436. MR 1081652,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 58J50, 58J40, 35P99, 81S10

Retrieve articles in all journals with MSC (2000): 58J50, 58J40, 35P99, 81S10

Additional Information

Steve Zelditch
Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218

Received by editor(s): January 28, 2003
Received by editor(s) in revised form: March 10, 2003
Published electronically: November 21, 2003
Additional Notes: This research was partially supported by NSF grant DMS-0071358 and by the Clay Mathematics Institute
Communicated by: Christopher D. Sogge
Article copyright: © Copyright 2003 American Mathematical Society