Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Backward uniqueness for solutions of linear parabolic equations

Author: Igor Kukavica
Translated by:
Journal: Proc. Amer. Math. Soc. 132 (2004), 1755-1760
MSC (2000): Primary 35K15
Published electronically: December 22, 2003
MathSciNet review: 2051137
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We address the backward uniqueness property for the equation $u_t-\Delta u = w_j\partial_{j}u+v u$ in ${\mathbb R}^n\times(T_0,0]$. We show that under rather general conditions on $v$ and $w$, $u\vert _{t=0}=0$ implies that $u$ vanishes to infinite order for all points $(x,0)$. It follows that the backward uniqueness holds if $w=0$and $v\in L^{\infty}([0,T_0],L^p({\mathbb R}^n))$ when $p>n/2$. The borderline case $p=n/2$ is also covered with an additional continuity and smallness assumption.

References [Enhancements On Off] (What's this?)

  • [A] S. Agmon, Unicité et convexité dans les problèmes différentiels, Séminaire de Mathématiques Supérieures, No. 13 (Eté, 1965), Les Presses de l'Université de Montréal, Montreal, Quebec, 1966. MR 40:6025
  • [AN1] S. Agmon and L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math. 16 (1963), 121-239. MR 27:5142
  • [AN2] S. Agmon and L. Nirenberg, Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space, Comm. Pure Appl. Math. 20 (1967), 207-229. MR 34:4665
  • [BT] C. Bardos and L. Tartar, Sur l'unicité rétrograde des équations paraboliques et quelques questions voisines, Arch. Rational Mech. Anal. 50 (1973), 10-25. MR 49:3281
  • [E] L. Escauriaza, Carleman inequalities and the heat operator, Duke Math. J. 104 (2000), 113-127. MR 2001m:35135
  • [EV] L. Escauriaza and L. Vega, Carleman inequalities and the heat operator. II, Indiana Univ. Math. J. 50 (2001), 1149-1169. MR 2003b:35088
  • [G] J.-M. Ghidaglia, Some backward uniqueness results, Nonlinear Anal. 10 (1986), 777-790. MR 87m:34083
  • [L] P. D. Lax, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations, Comm. Pure Appl. Math. 9 (1956), 747-766. MR 19:281a
  • [LP] M. Lees and M. H. Protter, Unique continuation for parabolic differential equations and inequalities, Duke Math. J. 28 (1961), 369-382.MR 25:4254
  • [P] M. H. Protter, Properties of solutions of parabolic equations and inequalities, Canad. J. Math. 13 (1961), 331-345. MR 27:3943

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35K15

Retrieve articles in all journals with MSC (2000): 35K15

Additional Information

Igor Kukavica
Affiliation: Department of Mathematics, University of Southern California, Los Angeles, California 90089

Keywords: Backward uniqueness, parabolic equation, parabolic inequalities, backward stability
Received by editor(s): February 7, 2003
Published electronically: December 22, 2003
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society