Strong limit-point classification of singular Hamiltonian expressions

Authors:
Jiangang Qi and Shaozhu Chen

Translated by:

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1667-1674

MSC (2000):
Primary 34B20; Secondary 47B25

Published electronically:
January 7, 2004

MathSciNet review:
2051127

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Strong limit-point criteria for singular Hamiltonian differential expressions with complex coefficients are obtained. The main results are extensions of the previous results due to Everitt, Giertz, and Weidmann for scalar differential expressions.

**1.**F. V. Atkinson,*Discrete and continuous boundary problems*, Mathematics in Science and Engineering, Vol. 8, Academic Press, New York-London, 1964. MR**0176141****2.**Stephen L. Clark,*A criterion for absolute continuity of the continuous spectrum of a Hamiltonian system*, J. Math. Anal. Appl.**151**(1990), no. 1, 108–128. MR**1069450**, 10.1016/0022-247X(90)90245-B**3.**Nelson Dunford and Jacob T. Schwartz,*Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space*, With the assistance of William G. Bade and Robert G. Bartle, Interscience Publishers John Wiley & Sons New York-London, 1963. MR**0188745****4.**W. N. Everitt,*On the limit-point classification of second-order differential operators*, J. London Math. Soc.**41**(1966), 531–534. MR**0200519****5.**W. N. Everitt and M. Giertz,*On some properties of the domains of powers of certain differential operators*, Proc. London Math. Soc. (3)**24**(1972), 756–768. MR**0303355****6.**W. N. Everitt, M. Giertz, and J. B. McLeod,*On the strong and weak limit-point classfication of second-order differential expressions*, Proc. London Math. Soc. (3)**29**(1974), 142–158. MR**0361255****7.**W. N. Everitt, M. Giertz, and J. Weidmann,*Some remarks on a separation and limit-point criterion of second-order, ordinary differential expressions*, Math. Ann.**200**(1973), 335–346. MR**0326047****8.**W. N. Everitt, D. B. Hinton, and J. S. W. Wong,*On the strong limit-𝑛 classification of linear ordinary differential expressions of order 2𝑛*, Proc. London Math. Soc. (3)**29**(1974), 351–367. MR**0409956****9.**Einar Hille,*Lectures on ordinary differential equations*, Addison-Wesley Publ. Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR**0249698****10.**D. B. Hinton and J. K. Shaw,*On boundary value problems for Hamiltonian systems with two singular points*, SIAM J. Math. Anal.**15**(1984), no. 2, 272–286. MR**731867**, 10.1137/0515022**11.**D. B. Hinton and J. K. Shaw,*Absolutely continuous spectra of Dirac systems with long range, short range and oscillating potentials*, Quart. J. Math. Oxford Ser. (2)**36**(1985), no. 142, 183–213. MR**790479**, 10.1093/qmath/36.2.183**12.**Roger A. Horn and Charles R. Johnson,*Matrix analysis*, Cambridge University Press, Cambridge, 1985. MR**832183****13.**Robert M. Kauffman, Thomas T. Read, and Anton Zettl,*The deficiency index problem for powers of ordinary differential expressions*, Lecture Notes in Mathematics, Vol. 621, Springer-Verlag, Berlin-New York, 1977. MR**0481243****14.**Allan M. Krall,*𝑀(𝜆) theory for singular Hamiltonian systems with one singular point*, SIAM J. Math. Anal.**20**(1989), no. 3, 664–700. MR**990871**, 10.1137/0520047**15.**Allan M. Krall,*A limit-point criterion for linear Hamiltonian systems*, Appl. Anal.**61**(1996), no. 1-2, 115–119. MR**1625457**, 10.1080/00036819608840449**16.**V. K. Kumar,*On the strong limit-point classification of fourth-order differential expressions with complex coefficients*, J. London Math. Soc. (2)**12**(1976), 287-298.**17.**Philip W. Walker,*A vector-matrix formulation for formally symmetric ordinary differential equations with applications to solutions of integrable square*, J. London Math. Soc. (2)**9**(1974/75), 151–159. MR**0369792**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
34B20,
47B25

Retrieve articles in all journals with MSC (2000): 34B20, 47B25

Additional Information

**Jiangang Qi**

Affiliation:
Department of Mathematics, Ningbo University, Ningbo, Zhejiang 315211, People’s Republic of China

Email:
qwljg01@sohu.com

**Shaozhu Chen**

Affiliation:
Department of Mathematics, Shandong University, Jinan, Shandong 250100, People’s Republic of China

Email:
szchen@sdu.edu.cn

DOI:
https://doi.org/10.1090/S0002-9939-04-07037-6

Keywords:
Hamiltonian system,
deficiency index,
strong limit-point case

Received by editor(s):
January 30, 2002

Received by editor(s) in revised form:
September 6, 2002, and September 15, 2002

Published electronically:
January 7, 2004

Additional Notes:
This project was supported by the NSF of China under Grant 10071043

Communicated by:
Carmen C. Chicone

Article copyright:
© Copyright 2004
American Mathematical Society