Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pseudocompact spaces $X$ and $df$-spaces $C_{c}\left( X\right) $


Authors: Jerzy Kakol, Stephen A. Saxon and Aaron R. Todd
Translated by:
Journal: Proc. Amer. Math. Soc. 132 (2004), 1703-1712
MSC (2000): Primary 46A08, 46A30, 54C35
DOI: https://doi.org/10.1090/S0002-9939-04-07279-X
Published electronically: January 9, 2004
MathSciNet review: 2051131
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X$ be a completely regular Hausdorff space, and let $C_{c}\left( X\right) $be the space $C\left( X\right) $ of continuous real-valued functions on $X$endowed with the compact-open topology. We find various equivalent conditions for $C_{c}\left( X\right) $ to be a $df$-space, resolving an old question of Jarchow and consolidating work by Jarchow, Mazon, McCoy and Todd. Included are analytic characterizations of pseudocompactness and an example that shows that, for $C_{c}\left( X\right) $, Grothendieck's $DF$-spaces do not coincide with Jarchow's $df$-spaces. Any such example necessarily answers a thirty-year-old question on weak barrelledness properties for $C_{c}\left( X\right) $, our original motivation.


References [Enhancements On Off] (What's this?)

  • 1. H. Buchwalter and J. Schmets, Sur quelques propriétés de l'espace $C_{s}\left( X\right) $, J. Math. Pures Appl. 52 (1973), 337-352. MR 48:12012
  • 2. D. H. Fremlin, D. J. H. Garling, and R. G. Haydon, Bounded measures on topological spaces, Proc. London Math. Soc. (3) 25 (1972), 115-136. MR 49:9144
  • 3. H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981. MR 83h:46008
  • 4. J. Kakol and S. A. Saxon, Montel $\left( DF\right) $-spaces, sequential $\left( LM\right) $-spaces and the strongest locally convex topology, J. London Math. Soc. 66 (2002), 388-406. MR 2003h:46013
  • 5. J. Kakol, S. A. Saxon, and A. R. Todd, Weak barrelledness for $C\left( X\right) $ spaces, preprint.
  • 6. W. Lehner, Über die Bedeutung gewisser Varianten des Baire'schen Kategorienbegriffs für die Funktionenräume $ C_{c}\left( T\right) $, Dissertation, Ludwig-Maximilians-Universität, München (1979).
  • 7. J. M. Mazon, On the $df$-spaces of continuous functions, Bull. Soc. Roy. Sci. Liège 53 (1984), 225-232. MR 86b:46037
  • 8. R. A. McCoy and Aaron R. Todd, Support spaces and $ P\left( K\right) $-points in the Stone-Cech compactification of the integers, Southeast Asian Bull. Math. 20, No. 1 (1996), 11-18. MR 97c:46028
  • 9. J. van Mill, Sixteen topological types in $\beta \omega \,\,\backslash \,\,\omega $, Topology Appl. 13 (1982), 43-57. MR 83c:54036
  • 10. P. D. Morris and D. E. Wulbert, Functional representation of topological algebras, Pacific J. Math. 22 (1967), 323-337. MR 35:4730
  • 11. P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, Math. Studies 131, North-Holland, Amsterdam, 1987. MR 88j:46003
  • 12. Stephen A. Saxon, Nuclear and Product Spaces, Baire-Like Spaces, and the Strongest Locally Convex Topology, Math. Ann. 197 (1972), 87-106. MR 46:4140
  • 13. S. A. Saxon and L. M. Sánchez Ruiz, Dual local completeness, Proc. Amer. Math. Soc. 125 (1997), 1063-1070. MR 97g:46004
  • 14. Stephen A. Saxon and Ian Tweddle, Mackey $\aleph _{0}$-barrelled spaces, Advances in Math. 145 (1999), 230-238. MR 2000g:46003
  • 15. S. Warner, The topology of compact convergence on continuous function spaces, Duke Math. J. 25 (1958), 265-282. MR 21:1521
  • 16. A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978. MR 81d:46001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46A08, 46A30, 54C35

Retrieve articles in all journals with MSC (2000): 46A08, 46A30, 54C35


Additional Information

Jerzy Kakol
Affiliation: Department of Mathematics, Baruch College, C.U.N.Y., New York, New York 10010, and Faculty of Mathematics and Informatics, A. Mickiewicz University, 60-769 Poznań, Matejki 48-49, Poland
Email: kakol@math.amu.edu.pl

Stephen A. Saxon
Affiliation: Department of Mathematics, University of Florida, P.O. Box 118105, Gainesville, Florida 32611-8105
Email: saxon@math.ufl.edu

Aaron R. Todd
Affiliation: Department of Mathematics, Baruch College, C.U.N.Y., New York, New York 10010
Email: artbb@cunyvm.cuny.edu

DOI: https://doi.org/10.1090/S0002-9939-04-07279-X
Keywords: Compact-open topology, $DF\,$- and $df$-spaces, completely regular, docile, locally complete, weak barrelledness
Received by editor(s): December 12, 2002
Published electronically: January 9, 2004
Additional Notes: We thank Baruch College of New York for their hospitality and support, particularly in the form of a Weissman Visiting Professorship awarded to the first author, also supported by Komitet Banań Naukowych (State Committee for Scientific Research), Poland, grant no. 2803A 022 25.
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society