Weak properties of weighted convolution algebras
Author:
Sandy Grabiner
Translated by:
Journal:
Proc. Amer. Math. Soc. 132 (2004), 16751684
MSC (2000):
Primary 43A10, 43A20, 43A22, 46J45
Published electronically:
January 12, 2004
MathSciNet review:
2051128
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Suppose that is a weighted convolution algebra on with the weight normalized so that the corresponding space of measures is the dual space of the space of continuous functions. Suppose that is a continuous nonzero homomorphism, where is also a convolution algebra. If is norm dense in , we show that is (relatively) weak dense in , and we identify the norm closure of with the convergence set for a particular semigroup. When is weak continuous it is enough for to be weak dense in . We also give sufficient conditions and characterizations of weak continuity of . In addition, we show that, for all nonzero in , the sequence converges weak to 0. When is regulated, converges to 0 in norm.
 [A]
G.
R. Allan, An inequality involving product measures, Radical
Banach algebras and automatic continuity (Long Beach, Calif., 1981),
Lecture Notes in Math., vol. 975, Springer, BerlinNew York, 1983,
pp. 277–279. MR 697588
(84m:46062)
 [BD]
W.
G. Bade and H.
G. Dales, Continuity of derivations from radical convolution
algebras, Studia Math. 95 (1989), no. 1,
59–91. MR
1024275 (90k:46115)
 [BDL]
W.
G. Bade, H.
G. Dales, and K.
B. Laursen, Multipliers of radical Banach algebras of power
series, Mem. Amer. Math. Soc. 49 (1984),
no. 303, v+84. MR 743548
(85j:46094), http://dx.doi.org/10.1090/memo/0303
 [D]
H.
G. Dales, Banach algebras and automatic continuity, London
Mathematical Society Monographs. New Series, vol. 24, The Clarendon
Press, Oxford University Press, New York, 2000. Oxford Science
Publications. MR
1816726 (2002e:46001)
 [DS]
Nelson
Dunford and Jacob
T. Schwartz, Linear Operators. I. General Theory, With the
assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics,
Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers,
Ltd., London, 1958. MR 0117523
(22 #8302)
 [Gh]
F.
Ghahramani, Isomorphisms between radical weighted convolution
algebras, Proc. Edinburgh Math. Soc. (2) 26 (1983),
no. 3, 343–351. MR 722565
(85h:43002), http://dx.doi.org/10.1017/S0013091500004417
 [GG1]
F.
Ghahramani and S.
Grabiner, Standard homomorphisms and convergent sequences in
weighted convolution algebras, Illinois J. Math. 36
(1992), no. 3, 505–527. MR 1161980
(93d:46089)
 [GG2]
F.
Ghahramani and S.
Grabiner, The 𝐿^{𝑝} theory of standard
homomorphisms, Pacific J. Math. 168 (1995),
no. 1, 49–60. MR 1331994
(96e:43004)
 [GG3]
F. Ghahramani and S. Grabiner, Convergence factors and compactness in weighted convolution algebras, Canad. J. Math. 54 (2002), 303323.
 [GGM]
F.
Ghahramani, J.
P. McClure, and S.
Grabiner, Standard homomorphisms and regulated weights on weighted
convolution algebras, J. Funct. Anal. 91 (1990),
no. 2, 278–286. MR 1058973
(91k:43007), http://dx.doi.org/10.1016/00221236(90)90145B
 [GhM]
F.
Ghahramani and J.
P. McClure, Automorphisms and derivations of a Fréchet
algebra of locally integrable functions, Studia Math.
103 (1992), no. 1, 51–69. MR 1184102
(93j:46055)
 [Gr1]
Sandy
Grabiner, Homomorphisms and semigroups in weighted convolution
algebras, Indiana Univ. Math. J. 37 (1988),
no. 3, 589–615. MR 962925
(90f:43007), http://dx.doi.org/10.1512/iumj.1988.37.37029
 [Gr2]
Sandy
Grabiner, Semigroups and the structure of weighted convolution
algebras, Conference on Automatic Continuity and Banach Algebras
(Canberra, 1989), Proc. Centre Math. Anal. Austral. Nat. Univ.,
vol. 21, Austral. Nat. Univ., Canberra, 1989, pp. 155–169.
MR
1022002 (91c:43004)
 [Gr3]
Sandy
Grabiner, Weighted convolution algebras and their
homomorphisms, Functional analysis and operator theory (Warsaw, 1992)
Banach Center Publ., vol. 30, Polish Acad. Sci., Warsaw, 1994,
pp. 175–190. MR 1285606
(95e:43004)
 [HP]
Einar
Hille and Ralph
S. Phillips, Functional analysis and semigroups, American
Mathematical Society Colloquium Publications, vol. 31, American
Mathematical Society, Providence, R. I., 1957. rev. ed. MR 0089373
(19,664d)
 [LRRW]
R.
J. Loy, C.
J. Read, V.
Runde, and G.
A. Willis, Amenable and weakly amenable Banach algebras with
compact multiplication, J. Funct. Anal. 171 (2000),
no. 1, 78–114. MR 1742859
(2001h:46088), http://dx.doi.org/10.1006/jfan.1999.3533
 [S]
Michel
Solovej, Norms of powers in the Volterra algebra, Bull.
Austral. Math. Soc. 50 (1994), no. 1, 55–57. MR 1285659
(95g:46101), http://dx.doi.org/10.1017/S0004972700009564
 [W]
G.
A. Willis, The norms of powers of functions in the Volterra
algebra, Radical Banach algebras and automatic continuity (Long Beach,
Calif., 1981), Lecture Notes in Math., vol. 975, Springer, BerlinNew
York, 1983, pp. 280–281. MR 697589
(84m:46063)
 [A]
 G. R. Allan, An inequality involving product measures, in J. M. Bachar et al. (eds.), Radical Banach algebras and automatic continuity, 277279, Lecture Notes in Math. #975, SpringerVerlag, New York, 1983. MR 84m:46062
 [BD]
 W. G. Bade and H. G. Dales, Continuity of derivations from radical convolution algebras, Studia Math. 95 (1989), 5991. MR 90k:46115
 [BDL]
 W. G. Bade, H. G. Dales, and K. B. Laursen, Multipliers of radical Banach algebras of power series, Mem. Amer. Math. Soc., 49, 1984. MR 85j:46094
 [D]
 H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monographs, 24, Clarendon Press, Oxford, 2000. MR 2002e:46001
 [DS]
 N. Dunford and J. T. Schwartz, Linear operators, Part I, Wiley Interscience, New York, 1958. MR 22:8302
 [Gh]
 F. Ghahramani, Isomorphisms between radical weighted convolution algebras, Proc. Edinburgh Math. Soc. (2) 26 (1983), 343351. MR 85h:43002
 [GG1]
 F. Ghahramani and S. Grabiner, Standard homomorphisms and convergent sequences in weighted convolution algebras, Illinois J. Math. 36 (1992), 505527. MR 93d:46089
 [GG2]
 F. Ghahramani and S. Grabiner, The theory of standard homomorphisms, Pacific J. Math. 168 (1995), 4960. MR 96e:43004
 [GG3]
 F. Ghahramani and S. Grabiner, Convergence factors and compactness in weighted convolution algebras, Canad. J. Math. 54 (2002), 303323.
 [GGM]
 F. Ghahramani, S. Grabiner, and J. P. McClure, Standard homomorphisms and regulated weights on weighted convolution algebras, J. Functional Anal. 91 (1990), 278286. MR 91k:43007
 [GhM]
 F. Ghahramani and J. P. McClure, Automorphisms and derivations of a Fréchet algebra of locally integrable functions, Studia Math. 103 (1992), 5169. MR 93j:46055
 [Gr1]
 S. Grabiner, Homomorphisms and semigroups in weighted convolution algebras, Indiana Univ. Math. J. 37 (1988), 589615. MR 90f:43007
 [Gr2]
 S. Grabiner, Semigroups and the structure of weighted convolution algebras, in Proceedings of the Conference on Automatic Continuity and Banach Algebras, R. J. Loy, ed., Proc. Centre Math. Anal., Australian National University, vol. 21 (1989), 155169. MR 91c:43004
 [Gr3]
 S. Grabiner, Weighted convolution algebras and their homomorphisms, in Functional Analysis and Operator Theory, Banach Center Publications 30 (1994), 175190, Polish Acad. of Sci., Warsaw. MR 95e:43004
 [HP]
 E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloquium Publ. 31, Providence, R.I., 1957. MR 19:664d
 [LRRW]
 R. J. Loy, C. J. Read, V. Runde, and G. A. Willis, Amenable and weakly amenable Banach algebras with compact multiplication, J. Functional Analysis 171 (2000), 78114. MR 2001h:46088
 [S]
 M. Solovej, Norms of powers in the Volterra algebra, Bull. Austral. Math. Soc. 50 (1994), 5557. MR 95g:46101
 [W]
 G. A. Willis, The norms of powers of functions in the Volterra algebra, in J. M. Bachar et al. (eds.), Radical Banach algebras and automatic continuity, 345349, Lecture Notes in Math. #975, SpringerVerlag, New York, 1983. MR 84m:46063
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
43A10,
43A20,
43A22,
46J45
Retrieve articles in all journals
with MSC (2000):
43A10,
43A20,
43A22,
46J45
Additional Information
Sandy Grabiner
Affiliation:
Department of Mathematics, Pomona College, Claremont, California 91711
DOI:
http://dx.doi.org/10.1090/S000299390407385X
PII:
S 00029939(04)07385X
Received by editor(s):
October 9, 2002
Published electronically:
January 12, 2004
Additional Notes:
The research for this paper was done while the author enjoyed the gracious hospitality of the Australian National University in Canberra
Communicated by:
N. TomczakJaegermann
Article copyright:
© Copyright 2004
American Mathematical Society
