Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Embeddings of some classical Banach spaces into modulation spaces


Author: Kasso A. Okoudjou
Translated by:
Journal: Proc. Amer. Math. Soc. 132 (2004), 1639-1647
MSC (2000): Primary 46E35; Secondary 42B35
DOI: https://doi.org/10.1090/S0002-9939-04-07401-5
Published electronically: January 29, 2004
MathSciNet review: 2051124
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give sufficient conditions for a tempered distribution to belong to certain modulation spaces by showing embeddings of some Besov-Triebel-Lizorkin spaces into modulation spaces. As a consequence we have a new proof that the Hölder-Lipschitz space $C^{s}(\mathbb{R} ^{d})$ embeds into the modulation space $M^{\infty,1}(\mathbb{R} ^{d})$ when $s>d$. This embedding plays an important role in interpreting recent modulation space approaches to pseudodifferential operators.


References [Enhancements On Off] (What's this?)

  • 1. H. G. Feichtinger, Modulation spaces on locally Abelian groups, Technical Report, University of Vienna, 1983.
  • 2. H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I, J. Funct. Anal. 86:307-340, 1989. MR 91g:43011
  • 3. H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. II, Monatsh. Math. 108:129-148, 1989. MR 91g:43012
  • 4. G. B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 92k:22017
  • 5. Y. V. Galperin and K. Gröchenig, Uncertainty principles as embeddings of modulation spaces, J. Math. Anal. Appl. 274(1):181-202, 2002. MR 2003h:46040
  • 6. P. Gröbner, Banachräume Glatter Funktionen und Zerlegungsmethoden, Ph.D. Thesis, University of Vienna, 1983.
  • 7. K. Gröchenig, An uncertainty principle related to the Poisson summation formula, Studia Math. 121:87-104, 1996. MR 98a:42007
  • 8. K. Gröchenig, Foundations of Time-Frequency Analysis, Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, MA, 2001. MR 2002h:42001
  • 9. K. Gröchenig and C. Heil, Modulation spaces and pseudodifferential operators, Integral Equations Operator Theory 34:439-457, 1999. MR 2001a:47051
  • 10. C. Heil, J. Ramanathan, and P. Topiwala, Singular values of compact pseudodifferential operators, J. Funct. Anal. 150:426-452, 1997. MR 98k:47102
  • 11. J. A. Hogan and J. D. Lakey, Embeddings and uncertainty principles for generalized modulation spaces, in ``Sampling Theory and Its Applications,'' J. J. Benedetto and P. Ferreira, eds., Modern Sampling Theory - Mathematics and Applications, Birkhäuser, Boston, MA, 2001. MR 2003a:94003
  • 12. T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, Walter de Gruyter, Berlin, 1996. MR 98a:47071
  • 13. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970. MR 44:7280
  • 14. J. Toft, Embeddings for modulation spaces and Besov spaces, Research Report 2001:11, Blekinge Institute of Technology, 2002.
  • 15. H. Triebel, Theory of Function Spaces, Monographs in Mathematics, No. 78, Birkhäuser Verlag, Basel, 1983. MR 86j:46026
  • 16. H. Triebel, Theory of Function Spaces II, Monographs in Mathematics, No. 84, Birkhäuser Verlag, Basel, 1992. MR 93f:46029

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46E35, 42B35

Retrieve articles in all journals with MSC (2000): 46E35, 42B35


Additional Information

Kasso A. Okoudjou
Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0160
Address at time of publication: Department of Mathematics, Malott Hall, Cornell University, Ithaca, New York, 14853-4201
Email: okoudjou@math.gatech.edu, kasso@math.cornell.edu

DOI: https://doi.org/10.1090/S0002-9939-04-07401-5
Keywords: Besov space, modulation space, Sobolev space, short-time Fourier transform, Triebel-Lizorkin space, time-frequency analysis
Received by editor(s): March 22, 2002
Published electronically: January 29, 2004
Additional Notes: The author was partially supported by NSF Grant DMS-9970524
Communicated by: David R. Larson
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society