Stability of algebras associated to graphs
Author:
Mark Tomforde
Translated by:
Journal:
Proc. Amer. Math. Soc. 132 (2004), 17871795
MSC (2000):
Primary 46L55
Published electronically:
January 30, 2004
MathSciNet review:
2051143
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We characterize stability of graph algebras by giving five conditions equivalent to their stability. We also show that if is a graph with no sources, then is stable if and only if each vertex in can be reached by an infinite number of vertices. We use this characterization to realize the stabilization of a graph algebra. Specifically, if is a graph and is the graph formed by adding a head to each vertex of , then is the stabilization of ; that is, .
 1.
T. Bates, J. H. Hong, I. Raeburn, and W. Szymanski, The ideal structure of the algebras of infinite graphs, Illinois J. Math. 46 (2002), 11591176.
 2.
Teresa
Bates, David
Pask, Iain
Raeburn, and Wojciech
Szymański, The 𝐶*algebras of rowfinite
graphs, New York J. Math. 6 (2000), 307–324
(electronic). MR
1777234 (2001k:46084)
 3.
Bruce
E. Blackadar, Traces on simple AF 𝐶*algebras, J.
Funct. Anal. 38 (1980), no. 2, 156–168. MR 587906
(82a:46062), http://dx.doi.org/10.1016/00221236(80)900622
 4.
Joachim
Cuntz, Dimension functions on simple 𝐶*algebras,
Math. Ann. 233 (1978), no. 2, 145–153. MR 0467332
(57 #7191)
 5.
Joachim
Cuntz and Wolfgang
Krieger, A class of 𝐶*algebras and topological Markov
chains, Invent. Math. 56 (1980), no. 3,
251–268. MR
561974 (82f:46073a), http://dx.doi.org/10.1007/BF01390048
 6.
D. Drinen and M. Tomforde, The algebras of arbitrary graphs, preprint (2000).
 7.
Neal
J. Fowler, Marcelo
Laca, and Iain
Raeburn, The 𝐶*algebras of infinite
graphs, Proc. Amer. Math. Soc.
128 (2000), no. 8,
2319–2327. MR 1670363
(2000k:46079), http://dx.doi.org/10.1090/S0002993999053782
 8.
Jacob
v. B. Hjelmborg, Purely infinite and stable 𝐶*algebras of
graphs and dynamical systems, Ergodic Theory Dynam. Systems
21 (2001), no. 6, 1789–1808. MR 1869070
(2002h:46112), http://dx.doi.org/10.1017/S0143385701001857
 9.
Jacob
v. B. Hjelmborg and Mikael
Rørdam, On stability of 𝐶*algebras, J. Funct.
Anal. 155 (1998), no. 1, 153–170. MR 1623142
(99g:46079), http://dx.doi.org/10.1006/jfan.1997.3221
 10.
Alex
Kumjian, David
Pask, and Iain
Raeburn, CuntzKrieger algebras of directed graphs, Pacific J.
Math. 184 (1998), no. 1, 161–174. MR 1626528
(99i:46049), http://dx.doi.org/10.2140/pjm.1998.184.161
 11.
Alex
Kumjian, David
Pask, Iain
Raeburn, and Jean
Renault, Graphs, groupoids, and CuntzKrieger algebras, J.
Funct. Anal. 144 (1997), no. 2, 505–541. MR 1432596
(98g:46083), http://dx.doi.org/10.1006/jfan.1996.3001
 12.
Mark
Tomforde, The ordered 𝐾₀group of a graph
𝐶*algebra, C. R. Math. Acad. Sci. Soc. R. Can.
25 (2003), no. 1, 19–25 (English, with English
and French summaries). MR 1962131
(2003m:46104)
 13.
Yasuo
Watatani, Graph theory for 𝐶*algebras, Operator
algebras and applications, Part I (Kingston, Ont., 1980) Proc. Sympos.
Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982,
pp. 195–197. MR 679705
(84a:46124)
 1.
 T. Bates, J. H. Hong, I. Raeburn, and W. Szymanski, The ideal structure of the algebras of infinite graphs, Illinois J. Math. 46 (2002), 11591176.
 2.
 T. Bates, D. Pask, I. Raeburn, and W. Szymanski, The algebras of rowfinite graphs, New York J. Math. 6 (2000), 307324 (electronic). MR 2001k:46084
 3.
 B. Blackadar, Traces on simple AF algebras, J. Funct. Anal. 38 (1980), 156168. MR 82a:46062
 4.
 J. Cuntz, Dimension functions on simple algebras, Math. Ann. 233 (1978), 145153. MR 57:7191
 5.
 J. Cuntz and W. Krieger, A class of algebras and topological Markov chains, Invent. Math. 56 (1980), 251268. MR 82f:46073a
 6.
 D. Drinen and M. Tomforde, The algebras of arbitrary graphs, preprint (2000).
 7.
 N. Fowler, M. Laca, and I. Raeburn, The algebras of infinite graphs, Proc. Amer. Math. Soc. 128 (2000), 23192327. MR 2000k:46079
 8.
 J. Hjelmborg, Purely infinite and stable algebras of graphs and dynamical systems, Ergodic Theory Dynam. Systems 21 (2001), 17891808. MR 2002h:46112
 9.
 J. Hjelmborg and M. Rørdam, On stability of algebras, J. Funct. Anal. 155 (1998), 153170. MR 99g:46079
 10.
 A. Kumjian, D. Pask, and I. Raeburn, CuntzKrieger algebras of directed graphs, Pacific J. Math. 184 (1998), 161174. MR 99i:46049
 11.
 A. Kumjian, D. Pask, I. Raeburn, and J. Renault, Graphs, groupoids, and CuntzKrieger algebras, J. Funct. Anal. 144 (1997), 505541. MR 98g:46083
 12.
 M. Tomforde, The ordered group of a graph algebra, C. R. Math. Acad. Sci. Soc. R. Can. 25 (2003), 1925. MR 2003m:46104
 13.
 Y. Watatani, Graph theory for algebras, in Operator Algebras and Their Applications (R. V. Kadison, ed.), Proc. Sympos. Pure Math., vol. 38, part 1, Amer. Math. Soc., Providence, RI, 1982, pp. 195197. MR 84a:46124
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
46L55
Retrieve articles in all journals
with MSC (2000):
46L55
Additional Information
Mark Tomforde
Affiliation:
Department of Mathematics, Dartmouth College, Hanover, New Hampshire 037553551
Address at time of publication:
Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
Email:
tomforde@math.uiowa.edu
DOI:
http://dx.doi.org/10.1090/S0002993904074118
PII:
S 00029939(04)074118
Received by editor(s):
June 14, 2002
Received by editor(s) in revised form:
March 1, 2003
Published electronically:
January 30, 2004
Communicated by:
David R. Larson
Article copyright:
© Copyright 2004 American Mathematical Society
