Weak compactness is equivalent to the fixed point property in

Authors:
P. N. Dowling, C. J. Lennard and B. Turett

Translated by:

Journal:
Proc. Amer. Math. Soc. **132** (2004), 1659-1666

MSC (2000):
Primary 47H10, 47H09, 46E30

Published electronically:
January 29, 2004

MathSciNet review:
2051126

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A nonempty, closed, bounded, convex subset of has the fixed point property if and only if it is weakly compact.

**1.**Dale E. Alspach,*A fixed point free nonexpansive map*, Proc. Amer. Math. Soc.**82**(1981), no. 3, 423–424. MR**612733**, 10.1090/S0002-9939-1981-0612733-0**2.**Jon M. Borwein and Brailey Sims,*Nonexpansive mappings on Banach lattices and related topics*, Houston J. Math.**10**(1984), no. 3, 339–356. MR**763236****3.**T. Domínguez Benavides, M. A. Japón Pineda and S. Prus,*Weak compactness and fixed point property for affine mappings*, to appear, J. Functional Analysis.**4.**P. N. Dowling, C. J. Lennard, and B. Turett,*Characterizations of weakly compact sets and new fixed point free maps in 𝑐₀*, Studia Math.**154**(2003), no. 3, 277–293. MR**1961112**, 10.4064/sm154-3-7**5.**K. Goebel and T. Kuczumow,*Irregular convex sets with fixed-point property for nonexpansive mappings*, Colloq. Math.**40**(1978/79), no. 2, 259–264. MR**547868****6.**R. Haydon, E. Odell, and Y. Sternfeld,*A fixed point theorem for a class of star-shaped sets in 𝐶₀*, Israel J. Math.**38**(1981), no. 1-2, 75–81. MR**599477**, 10.1007/BF02761850**7.**Maria A. Japón Pineda,*The fixed-point property in Banach spaces containing a copy of*, Abstract and Applied Analysis**2003**(2003), 183-192, and in ``Proceedings of the International Conference on Fixed-Point Theory and Applications'', Haifa, June 13-19, 2001 (S. Reich, editor), Hindawi Publishing Corporation, 2003, pp. 183-192.**8.**Enrique Llorens-Fuster and Brailey Sims,*The fixed point property in 𝑐₀*, Canad. Math. Bull.**41**(1998), no. 4, 413–422. MR**1658231**, 10.4153/CMB-1998-055-2**9.**B. Maurey,*Points fixes des contractions de certains faiblement compacts de 𝐿¹*, Seminar on Functional Analysis, 1980–1981, École Polytech., Palaiseau, 1981, pp. Exp. No. VIII, 19 (French). MR**659309****10.**Peter Meyer-Nieberg,*Banach lattices*, Universitext, Springer-Verlag, Berlin, 1991. MR**1128093****11.**E. Odell and Y. Sternfeld,*A fixed point theorem in 𝑐₀*, Pacific J. Math.**95**(1981), no. 1, 161–177. MR**631667****12.**Paolo M. Soardi,*Existence of fixed points of nonexpansive mappings in certain Banach lattices*, Proc. Amer. Math. Soc.**73**(1979), no. 1, 25–29. MR**512051**, 10.1090/S0002-9939-1979-0512051-6

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47H10,
47H09,
46E30

Retrieve articles in all journals with MSC (2000): 47H10, 47H09, 46E30

Additional Information

**P. N. Dowling**

Affiliation:
Department of Mathematics and Statistics, Miami University, Oxford, Ohio 45056

Email:
dowlinpn@muohio.edu

**C. J. Lennard**

Affiliation:
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Email:
lennard@pitt.edu

**B. Turett**

Affiliation:
Department of Mathematics and Statistics, Oakland University, Rochester, Michigan 48309

Email:
turett@oakland.edu

DOI:
https://doi.org/10.1090/S0002-9939-04-07436-2

Received by editor(s):
June 11, 2002

Published electronically:
January 29, 2004

Additional Notes:
The second author thanks Paddy Dowling and the Department of Mathematics and Statistics at Miami University for their hospitality during part of the preparation of this paper. He also acknowledges the financial support of Miami University

Communicated by:
Jonathan M. Borwein

Article copyright:
© Copyright 2004
American Mathematical Society