Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Zero product preserving maps of operator-valued functions


Authors: Wen-Fong Ke, Bing-Ren Li and Ngai-Ching Wong
Translated by:
Journal: Proc. Amer. Math. Soc. 132 (2004), 1979-1985
MSC (2000): Primary 46E40, 47B33
DOI: https://doi.org/10.1090/S0002-9939-03-07321-0
Published electronically: December 15, 2003
MathSciNet review: 2053969
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X,Y$ be locally compact Hausdorff spaces and ${\mathcal M}$, ${\mathcal N}$ be Banach algebras. Let $\theta: C_0(X,{\mathcal M}) \to C_0(Y, {\mathcal N})$ be a zero product preserving bounded linear map with dense range. We show that $\theta$ is given by a continuous field of algebra homomorphisms from ${\mathcal M}$ into ${\mathcal N}$if ${\mathcal N}$ is irreducible. As corollaries, such a surjective $\theta$ arises from an algebra homomorphism, provided that ${\mathcal M}$ is a $W^*$-algebra and ${\mathcal N}$ is a semi-simple Banach algebra, or both ${\mathcal M}$ and ${\mathcal N}$ are $C^*$-algebras.


References [Enhancements On Off] (What's this?)

  • 1. Y. A. Abramovich, Multiplicative representation of disjointness preserving operators, Nederl. Akad. Wetensch. Indag. Math. 45 (1983), 265-279. MR 85f:47040
  • 2. J. Araujo and K. Jarosz, Biseparating maps between operator algebras, J. Math. Anal. Appl. 282 (2003), no. 1, 48-55.
  • 3. B. H. Arnold, Rings of operators on vector spaces, Ann. of Math. (2) 45 (1944), 24-49. MR 5:147c
  • 4. L. G. Brown and G. K. Pedersen, $C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), 131-149. MR 92m:46086
  • 5. J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. 42 (1941), 839-873. MR 3:208c
  • 6. J. T. Chan, Operators with the disjoint support property, J. Operator Theory 24 (1990), 383-391. MR 93c:47035
  • 7. M. A. Chebotar, W.-F. Ke, P.-H. Lee and N.-C. Wong, Mappings preserving zero products, Studia Math. 155, no. 1 (2003), 77-94. MR 2003m:47066
  • 8. P. R. Chernoff, Representations, automorphisms, and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 275-289. MR 50:2934
  • 9. J. B. Conway, A course in operator theory, Graduate Studies in Math. 21, American Mathematical Society, Providence, Rhode Island, 2000. MR 2001d:47001
  • 10. J. Cui and J. Hou, Linear maps on von Neumann algebras preserving zero products or TR-rank, Bull. Austral. Math. Soc. 65 (2002), 79-91. MR 2002m:46092
  • 11. J. J. Font and S. Hernández, On separating maps between locally compact spaces, Arch. Math. (Basel) 63 (1994), 158-165. MR 95k:46083
  • 12. J. E. Jamison and M. Rajagopalan, Weighted composition operator on $C(X,E)$, J. Operator Theory 19 (1988), 307-317. MR 90b:47052
  • 13. K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull. 33 (1990), 139-144. MR 92j:46049
  • 14. J.-S. Jeang and N.-C. Wong, Weighted composition operators of $C_0(X)$'s, J. Math. Anal. Appl. 201 (1996), 981-993. MR 97f:47029
  • 15. B. E. Johnson, Continuity of homomorphisms of algebras of operators, J. London Math. Soc. 42 (1967), 537-541. MR 35:5953
  • 16. B.-R. Li, Introduction to operator algebras, World Scientific, Singapore, 1992.
  • 17. H. Porta and J. T. Schwartz, Representations of the algebra of all operators in Hilbert space, and related analytic function algebras, Comm. Pure and Applied Math. 20 (1967), 457-492. MR 35:2157
  • 18. H. Porta, A note on homomorphisms of operator algebras, Colloq. Math. 20 (1969), 117-119. MR 39:1988
  • 19. V. Runde, The structure of discontinuous homomorphisms from non-commutative $C^*$-algebras, Glasgow Math. J. 36 (1994), 209-218. MR 95i:46091
  • 20. S. Sakai, C*-algebras and W*-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York, 1971. MR 56:1082
  • 21. M. Wolff, Disjointness preserving operators on $C^*$-algebras, Arch. Math. (Basel) 62 (1994), 248-253. MR 94k:46122

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46E40, 47B33

Retrieve articles in all journals with MSC (2000): 46E40, 47B33


Additional Information

Wen-Fong Ke
Affiliation: Department of Mathematics, National Cheng Kung University, Tainan 701, Taiwan
Email: wfke@mail.ncku.edu.tw

Bing-Ren Li
Affiliation: Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, China
Email: brli@mail2.math.ac.cn

Ngai-Ching Wong
Affiliation: Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan
Email: wong@math.nsysu.edu.tw

DOI: https://doi.org/10.1090/S0002-9939-03-07321-0
Keywords: Zero product preserving maps, Banach algebra homomorphisms
Received by editor(s): July 25, 2002
Received by editor(s) in revised form: March 7, 2003
Published electronically: December 15, 2003
Communicated by: David R. Larson
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society