A NOTE ON THE SUPPORT OF A SOBOLEV FUNCTION
ON A k-CELL

W. K. ZIEMER

(Communicated by David Preiss)

Abstract. It is shown that a k-cell (the homeomorphic image of a closed ball in \mathbb{R}^k) in \mathbb{R}^n, $1 \leq k < n$, cannot support a function in $W^{1,p}(\mathbb{R}^n)$ if $p > \left[\frac{k+1}{2}\right]$, the greatest integer in $(k + 1)/2$.

1. Introduction

In this paper we investigate the question of determining whether the homeomorphic image of a k-dimensional closed ball in \mathbb{R}^n, $1 \leq k < n$, a k-cell, can support a Sobolev function $f \in W^{1,p}(\mathbb{R}^n)$. Since a k-cell is nowhere dense in \mathbb{R}^n, it is natural to first inquire whether a compact, nowhere dense set can support a Sobolev function. Of course, this question is only of interest when the set has positive Lebesgue measure. For the case $p > n$, the answer is obvious, since any function of $W^{1,p}(\mathbb{R}^n)$ has a continuous representative in \mathbb{R}^n, and a nonzero continuous function cannot have its support on a nowhere dense compact set. However, for the case $1 < p \leq n$, Polking [Pol72, Theorem 4] showed that there is a nonzero element of $W^{1,p}(\mathbb{R}^n)$ that does have nowhere dense compact support. A characterization of nowhere dense sets that can support $W^{1,p}(\mathbb{R}^n)$ functions in terms of capacity is given in [AH96, Theorem 11.3.2]. The existence of homeomorphisms that carry sets of Lebesgue measure zero into sets of positive measure is well known. Besicovitch [Bes50] constructed a homeomorphism from \mathbb{R}^2 to \mathbb{R}^3 that carries null sets onto sets of positive measure. In [Ron87], a homeomorphism in $W^{1,q}(\mathbb{R}^n;\mathbb{R}^n)$, with $q < n$, was constructed carrying null sets into sets of positive Lebesgue measure. The question we investigate in this paper is whether a k-cell in \mathbb{R}^n, $0 < k < n$, can support a Sobolev function $u \in W^{1,p}(\mathbb{R}^n)$. The complete answer to this question remains an open problem. Bagby and Gauthier [BG98] proved that for $n > k > 0$ and $p > \max(1, k-1)$, only the zero function in $W^{1,p}(\mathbb{R}^n)$ has its support contained in a k-cell. Our contribution to this question is to offer an improvement of this result for $n \geq 3$. In Theorem 5 of this paper it is shown that the Bagby-Gauthier result remains true by requiring $p > \left[\frac{k+1}{2}\right]$ where $\left[\frac{k+1}{2}\right]$ denotes the greatest integer in $(k + 1)/2$. The main ingredient of the proof is that under these restrictions on p, if $u \in W^{1,p}(\mathbb{R}^{k+1})$ is not identically zero, then u has a representative that is defined, continuous and strictly positive (or negative) on a pair of linked spheres of dimension $\left[\frac{k+1}{2}\right]$ and $(k + 1)/2$; see Definition 1.
2. Preliminaries

The Lebesgue measure of a set $E \subset \mathbb{R}^n$ is denoted by $|E|$, its s-dimensional Hausdorff measure by $H^s(E)$, and its p-capacity by $\gamma_p(E)$. We refer the reader to [MZ97, Section 2.1] for the definitions of p-capacity, its comparison to Hausdorff measure, and its relationship to functions in the Sobolev class $W^{1,p}$. In particular, we recall that

$$\gamma_p(E) = 0 \quad \text{if and only if} \quad H^{n-p+\varepsilon}(E) = 0 \quad \text{for all} \quad \varepsilon > 0 \quad \text{and} \quad 1 \leq p \leq n.$$

The restriction of a function u to a set E is denoted by $u \res E$. With $\Omega \subset \mathbb{R}^n$ an open set and $n \geq 1$, the Sobolev space $W^{1,p}(\Omega)$, $p \geq 1$, consists of those functions $u \in L^p(\Omega)$ for which the first-order distributional partial derivatives of u also belong to $L^p(\Omega)$. The norm on $W^{1,p}(\Omega)$ is given by

$$\|u\|_{1,p;\Omega} = \left(\sum_{k=0}^n \int_\Omega |D^k u|^p \, dx \right)^{1/p}.$$

An alternate definition of the Sobolev space is furnished by the fact that $C^\infty(\Omega) \cap \{ u : \|u\|_{1,p;\Omega} < \infty \}$ is dense in $W^{1,p}(\Omega)$. A sequence of functions that converges except on a set of γ_p zero is said to converge p-a.e. A function u is called p-quasicontinuous if for each $\varepsilon > 0$, there exists an open set $U \subset \mathbb{R}^n$ with $\gamma_p(U) \leq \varepsilon$ such that $u \res \mathbb{R}^n \setminus U$ is continuous. Any function $u \in W^{1,p}(\mathbb{R}^n)$ has a representative that is p-quasicontinuous. Indeed, the pointwise limit of a suitable subsequence of smooth functions $\{u_k\}$ that converge strongly to u in $W^{1,p}$ defines a p-quasicontinuous representative; cf. [MZ97, Lemma 2.19]. Throughout, we will employ the notation \mathbf{u} (boldface u) to denote a p-quasicontinuous representative of $u \in W^{1,p}(\mathbb{R}^n)$ and $B_a^p(r)$ to denote the open ball in \mathbb{R}^n with center x and radius r. Recall that an arbitrary $u \in L^p(\mathbb{R}^n)$ has an L^p-Lebesgue point almost everywhere; that is,

$$\lim_{r \to 0} \frac{1}{|B_a^p(r)|} \int_{B_a^p(r)} |u(x) - u(a)|^p \, dx = 0$$

for almost all $a \in \mathbb{R}^n$. When $u \in W^{1,p}(\mathbb{R}^n)$, this limit is zero for all a in the complement of a γ_p null set. If a is a Lebesgue point for u and if $\{u_k\}$ is taken as the standard mollifiers of u, then $u_k(a) \to u(a)$. We will use the notation $\mathring{u}(a,r)$ to denote the integral average of u over the the ball $B_a^p(r)$, and $\mathring{u}(a) := \lim_{r \to 0} \mathring{u}(a,r)$ when the limit exists. Likewise, we let $\nabla \mathring{u}(a)$ denote the value of ∇u in terms of the limit of its integral averages at a.

Throughout, we will assume that $1 \leq p \leq n$ since our problem becomes trivial if $p > n$. We will make extensive use of the “coarea formula”, stated below.

Theorem 1 ([Fed59, Theorem 3.1]). If X and Y are separable Riemannian manifolds of class 1 of respective dimensions m and k, $m \geq k$, and $f : X \to Y$ is a Lipschitzian map, then

$$\int_X g(x)Jf(x) \, dH^m(x) = \int_Y \left(\int_{f^{-1}(y)} g(x) \, dH^{m-k}(x) \right) dH^k(y)$$

whenever $g : X \to \mathbb{R}^1$ is H^m integrable. Here, $Jf(x)$ denotes the square root of the sum of the squares of the determinants of the $k \times k$ minors of the differential of f at x.

We will not need the full strength of Federer’s coarea formula, but merely the case when X and Y are subsets of Euclidean space.

3. Linked spheres in \mathbb{R}^n

Definition 1. With S^k denoting the standard k-sphere in \mathbb{R}^{k+1}, let $\Sigma^k_1 := h_1(S^k)$ and $\Sigma_{n-1-k}^2 := h_2(S^{n-1-k})$ be the images of disjoint topological embeddings, h_1, h_2, of S^k and S^{n-1-k} into \mathbb{R}^n. The linking number of Σ^k_1 and Σ^k_2 is defined as the topological degree of the mapping

$$S^k \times S^{n-1-k} \xrightarrow{f} S^{n-1}$$

defined by $f(x, y) = \frac{h_1(x) - h_2(y)}{h_1(x) - h_2(y)}$; see [Hir76] or [Rol76].

Remark 1. Recall that the topological degree is defined to be that integer, deg(f), so that the induced homomorphism of homology groups, $f_*: H_{n-1}(S^k \times S^{n-1-k}) \to H_{n-1}(S^{n-1})$, is given by multiplication by deg(f). Note that both homology groups are isomorphic to \mathbb{Z}. Recall also that if f is smooth, then deg(f) = $\sum_{x \in f^{-1}(y)} Jf(x)$ where y is a regular value of f, and where $Jf(x)$ denotes the Jacobian of f at x.

Theorem 2. Let \bar{B}^{n-1} be a closed ball in \mathbb{R}^{n-1} and suppose that $h: \bar{B}^{n-1} \to \mathbb{R}^n$ is an embedding, with disjoint $\Sigma^k_1, \Sigma_{n-1-k}^2 \subseteq h(\bar{B}^{n-1})$. Then the linking number of Σ^k_1 and Σ^k_2 is 0.

Proof. The mapping f in (3.1) can be factored as $f = f_2 \circ f_1$ where

$$f_1: S^k \times S^{n-1-k} \to (h(\bar{B}^{n-1}) \setminus \Sigma_{n-1-k}^2) \times \Sigma_{n-1-k}^2$$

and

$$f_2: (h(\bar{B}^{n-1}) \setminus \Sigma_{n-1-k}^2) \times \Sigma_{n-1-k}^2 \to S^{n-1}.$$

Let $H_i(K)$ denote the ith homology group of K. Recalling the Künneth theorem, [Mas91] Section XI.4, Theorem 4.1, and the fact that $H_i(S^k)$ and $H_i(S^k \setminus S^j)$ are torsion free, we have that

$$H_q \left((h(\bar{B}^{n-1}) \setminus \Sigma_{n-1-k}^2) \times \Sigma_{n-1-k}^2\right)$$

$$= \sum_{j=0}^q H_j \left(h(\bar{B}^{n-1}) \setminus \Sigma_{n-1-k}^2\right) \otimes H_{q-j} \left(\Sigma_{n-1-k}^2\right).$$

Since $h(\bar{B}^{n-1} \setminus \Sigma_{n-1-k}^2)$ is homeomorphic to $\bar{B}^{n-1} \setminus h^{-1}(\Sigma_{n-1-k}^2)$, the complement of an embedded $(n-1-k)$-sphere, we obtain the following homology groups: for $k > 1$,

$$H_q \left(h(\bar{B}^{n-1}) \setminus \Sigma_{n-1-k}^2\right) = \begin{cases} \mathbb{Z} & \text{when } q = 0, k-1, \text{ and } n-2, \\ 0 & \text{otherwise} \end{cases}$$

and

$$H_q \left(\Sigma_{n-1-k}^2\right) = \begin{cases} \mathbb{Z} & \text{when } q = 0, \text{ and } n-1-k, \\ 0 & \text{otherwise}. \end{cases}$$

Therefore,

$$H_q \left((h(\bar{B}^{n-1}) \setminus \Sigma_{n-1-k}^2) \times \Sigma_{n-1-k}^2\right) = 0$$

except when

$$q \in \{0, k-1, n-2, n-2-k, 2n-3-k\}.$$
Consequently, $H_{n-1} \left((h(B^{n-1}) \setminus \Sigma_2^{n-1-k}) \times \Sigma_2^{n-1-k} \right) = 0$ unless $2n - 3 - k = n - 1$; that is, if $k = n - 2$. However, without loss of generality, it can be assumed that $k < n/2$, and therefore $H_{n-1} \left((h(B^{n-1}) \setminus \Sigma_2^{n-1-k}) \times \Sigma_2^{n-1-k} \right) = 0$ except when $n = 3$. When $n = 3$, the Jordan Curve Theorem can be applied to the curves Σ_1^k and Σ_2^{n-1-k} in $h(B^3)$ to conclude that one of the curves is null homotopic in the complement of the other. Since the degree is a homotopy invariant, in this case the degree will be 0 as well.

4. QUASICONTINUOUS REPRESENTATIVES ON SPHERES

For $3 \leq m + 2 \leq n$ and $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$, we will write $x = (x', x'')$ where $x' = (x_1, x_2, \ldots, x_{m+1})$ and $x'' = (x_{m+2}, \ldots, x_n)$. Let $Q: \mathbb{R}^n \to \mathbb{R}^{n-m-1}$ be defined as $Q(x) = x''$. Then $Q^{-1}(x'')$ is an $(m + 1)$-dimensional “horizontal” affine space. Throughout, we will use the notation $S_m^m(r)$ to denote the m-sphere centered at $x \in \mathbb{R}^n$ of radius r that is contained in $Q^{-1}(x'')$. Thus,

$$S_m^m(r) = \{ y \in Q^{-1}(x'') : |y - x'| = r \}$$
$$= \{ y \in \mathbb{R}^n : y = (y', x''), |y' - x'| = r \}.$$

We will also consider spheres in planes orthogonal to $Q^{-1}(x'')$, using the familiar notation for spheres. Thus, for $b \in S_m^m(r)$ we will consider an $(n - m - 1)$-sphere centered at b in the $(n - m)$-plane orthogonal to $Q^{-1}(a'')$ that contains the line through a and b; thus, for $b \in S_m^m(r)$ and $0 < \rho < r$ we define

$$S_{\rho}^{n-m-1}(\rho) = \{ y \in \mathbb{R}^n : |y - b| = \rho, y' = \alpha(b' - a') + a', \alpha \in \mathbb{R}^1 \}.$$

It can be shown as a direct consequence of the definition that these spheres are linked. Also, see [Gage81] introductory remark.

For any $a \in \mathbb{R}^n$, let $F_a : \mathbb{R}^n \to \mathbb{R}^{n-m}$ be defined as $F_a(x) = F_a(x', x'') = (|x' - a'|, x'') \in \mathbb{R}^{n-m}$. Thus, for $z = (z_1, \ldots, z_{n-m}) \in \mathbb{R}^{n-m}$, we have

$$F_a^{-1}(z) = \{ y \in \mathbb{R}^n : |y' - a'| = z_1, y'' = (z_2, \ldots, z_{n-m}) \}$$
$$= S^{m}_{m}(w', z_2, \ldots, z_{n-m})(z_1).$$

It is not difficult to verify that $JF_a = 1$ and that F_a is Lipschitz with Lipschitz constant 1. Let $I_r \subset \mathbb{R}^{n-m}$ denote the cube in \mathbb{R}^{n-m} of side length $r > 0$ and center $(r, 0, \ldots, 0)$. Then $F_a^{-1}(I_r) := \bigcup_{w \in I_r} F_a^{-1}(w)$ defines a “rectangular torus.” For example, if $n = 3, m = 1, a = 0 \in \mathbb{R}^3$, and I_r is the r by r square in the (y, z)-plane centered at $(r, 0)$, then $F_a^{-1}(I_r)$ is the figure obtained by rotating I_r about the z-axis.

Theorem 3. Let $u \in W^{1,p}(\mathbb{R}^n)$, let m be an integer with $n \geq m + 2 \geq 3$, $p > m$ and let u denote an arbitrary, but fixed, p-quasiconstant representative of u as determined by the pointwise limit of a suitable subsequence of smooth functions u_k that converge strongly to u in $W^{1,p}(\mathbb{R}^n)$. Then:

(i) u is continuous on $F_a^{-1}(w)$ for H^{n-m}-a.e. $w \in \mathbb{R}^{n-m}$.

(ii) If $a \in \mathbb{R}^n$ is an L^p-Lebesgue point for both u and $|\nabla u|$ and if $\bar{u}(a) > 0$, then there exists $R_0 > 0$ such that for every $0 < r < R_0$ there exists an H^{n-m}-measurable set $E_r \subset I_r$ of positive H^{n-m}-measure such that u is continuous and positive on $F_a^{-1}(w)$ for $w \in E_r$.

Proof. (i) Since \(u \in W^{1,p}(\mathbb{R}^n) \), we know that \(u \) is the strong limit of functions \(u_k \in C^\infty(\mathbb{R}^n) \) and therefore, for each \(\varepsilon > 0 \), there exists an open set \(U_\varepsilon \subset \mathbb{R}^n \) and a subsequence such that \(\gamma_p(U_\varepsilon) < \varepsilon \) and that the \(u_k \) converge to \(u \) uniformly on \(\mathbb{R}^n \setminus U_\varepsilon \); cf. [MZ97, Lemma 2.19]. Choosing a sequence \(\varepsilon_j \to 0 \), we see that

\[
\gamma_p(U) = 0 \quad \text{where} \quad U := \bigcap_{\varepsilon_j} U_\varepsilon.
\]

Since \(F_a \) is Lipschitz, \(\gamma_p(F_a(U_\varepsilon)) \leq C \gamma_p(U_\varepsilon) < C \varepsilon_j \), where \(C = C(p,n) \). [AH96, Theorem 5.2.1]. Let

\[
E := \bigcap_{\varepsilon_j > 0} F_a(U_\varepsilon).
\]

Then \(\gamma_p(E) = 0 \), so that \(H^{n-p+\varepsilon}(E) = 0 \) for all \(\varepsilon > 0 \), by (2.1). Since \(p > m \), there exists \(\varepsilon > 0 \) and \(0 < \alpha < 1 \) such that \(n - p + \varepsilon = n - m - \alpha \), and therefore \(H^{n-m-\alpha}(E) = 0 \). This, in turn, implies that \(H^{n-m}(E) = 0 \). If \(w \notin E \), then \(w \notin F_a(U_\varepsilon) \) for some \(j \), which implies that \(F_a^{-1}(w) \cap U_\varepsilon = \emptyset \). Thus, \(u \), the uniform pointwise limit of the \(u_k \) on \(\mathbb{R}^n \setminus U_\varepsilon \), is continuous on \(F_a^{-1}(w) \) for \(w \notin E \). That is, \(u \) is continuous on \(F_a^{-1}(w) \) for \(H^{n-m} \)-a.e. \(w \in \mathbb{R}^n \).

(ii) The proof is divided into three parts.

Step 1. For \(H^{n-m} \)-a.e. \(w \in I_r \), \(u_w := u \mathbb{1}_{F_a^{-1}(w)} \), we claim that

\[
\sup_{F_a^{-1}(w)} |u| \leq C \left(\int_{F_a^{-1}(w)} r^{p-m} |\nabla (u_w)|^p + r^{-m} |u_w|^p \, dH^m \right)^{1/p},
\]

with \(C \) a constant. For this, observe that the co-area formula yields

\[
\lim_{k \to \infty} \int_{I_r} \int_{F_a^{-1}(w)} |\nabla u_k - \nabla u|^p + |u_k - u|^p \, dH^m \, dH^{n-m}(w)
\]

\[
= \lim_{k \to \infty} \int_{F_a^{-1}(I_r)} (|\nabla u_k - \nabla u|^p + |u_k - u|^p) \, dH^n
\]

\[= 0.
\]

Thus there is a subsequence of the \(u_k \) (still denoted as the full sequence) such that for \(H^{n-m} \)-a.e. \(w \in I_r \),

\[
\lim_{k,l \to \infty} \int_{F_a^{-1}(w)} |\nabla u_k - \nabla u_l|^p + |u_k - u_l|^p \, dH^m = 0.
\]

This subsequence converges strongly to some element of \(W^{1,p}(F_a^{-1}(w)) \), which we denote by

\[
u \mathbb{1}_{F_a^{-1}(w)}.
\]

Since \(u_k \to u \) uniformly on \(F_a^{-1}(w) \) for \(w \notin E \), observe that \(u \mathbb{1}_{F_a^{-1}(w)} \) is a continuous representative of \(u \mathbb{1}_{F_a^{-1}(w)} \). To ease notation, we will write \(u_w \) for \(u \mathbb{1}_{F_a^{-1}(w)} \). For \(g \in C^\infty(\mathbb{R}^n) \), it is well known that

\[
\sup_{S^a_m(1)} |g| \leq C \left(\int_{S^a_m(1)} |\nabla g|^p + |g|^p \, dH^m \right)^{1/p},
\]

with \(C = C(m,p) \), and by a simple scaling argument that

\[
\sup_{S^a_m(r)} |g| \leq C \left(\int_{S^a_m(r)} r^{p-m} |\nabla g|^p + r^{-m} |g|^p \, dH^m \right)^{1/p}.
\]
Since \(u_k \in F_{a_k}^{-1}(w) \) converges uniformly to \(u \in F_{a}^{-1}(w) \) and strongly to \(u_w \) in the sense of (4.4), applying (4.6) with \(g \) replaced by \(u_k \) yields (4.5).

Step 2. We will show that there exist a constant \(C_2 > 0 \) and an \(H^{n-m} \)-measurable set \(E_r \subset I_r \) of positive \(H^{n-m} \)-measure such that

\[
\int_{F_{a}^{-1}(w)} |\nabla u|^p + \left| \frac{u - \bar{u}(a, r)}{r} \right|^p \ dH^m \leq C_2 r^n \quad \text{for each } w \in E_r.
\]

From the hypotheses that \(a \) is an \(L^p \)-Lebesgue point for both \(u \) and \(|\nabla u| \) and that \(\bar{u}(a) > 0 \), it follows that there exist positive numbers \(R \) and \(\kappa \) such that for \(r \in (0, R) \) we have

\[
u(a, r) > \kappa > 0
\]

and

\[
\int_{B^n_a(r)} |\nabla u|^p dH^n \leq \left(|\nabla u(a)|^p + 1 \right) H^{n}(B^n_a(r)).
\]

Using Poincaré’s inequality and (4.9), there exists \(C_1 = C_1(n, p) \) such that

\[
\int_{B^n_a(r)} |u - \bar{u}(a, r)|^p dH^n \leq C_1 \int_{B^n_a(r)} |\nabla u|^p r^p dH^n \leq C_1 \alpha_n \left(|\nabla u(a)|^p + 1 \right) r^{n+p}
\]

where \(\alpha_n \) is the volume of the unit ball in \(\mathbb{R}^n \), and consequently,

\[
\int_{B^n_a(r)} \left| \frac{u - \bar{u}(a, r)}{r} \right|^p dH^n \leq C_1 \alpha_n \left(|\nabla u(a)|^p + 1 \right) r^n \quad \text{for } r \in (0, R).
\]

Employing the co-area formula, (4.11) and (4.9), we have for all \(r \in (0, R) \),

\[
\int_{I_r} \int_{F_{a}^{-1}(w)} |\nabla u|^p + \left| \frac{u - \bar{u}(a, r)}{r} \right|^p \ dH^m(t) dH^{n-m}(w)
\]

\[
= \int_{F_{a}^{-1}(I_r)} |JF_a| \left(|\nabla u|^p + \left| \frac{u - \bar{u}(a, r)}{r} \right|^p \right) dH^n
\]

\[
\leq \int_{B^n_a(r + r\sqrt{n}/2)} \left(|\nabla u|^p + \left| \frac{u - \bar{u}(a, r)}{r} \right|^p \right) dH^n
\]

\[
\leq \alpha_n \left(1 + \frac{\sqrt{n}}{2} \right)^n (C_1 + 1) \left(|\nabla u(a)|^p + 1 \right) r^n.
\]

That is, setting \(C_2 = \alpha_n \left(1 + \sqrt{n}/2 \right)^n (C_1 + 1) \left(|\nabla u(a)|^p + 1 \right) \), we have

\[
\int_{I_r} \int_{F_{a}^{-1}(w)} |\nabla u|^p + \left| \frac{u - \bar{u}(a, r)}{r} \right|^p \ dH^m dH^{n-m}(w) \leq C_2 r^n.
\]

Let \(G(w) \) denote the inner integral in this expression, so that we have

\[
\int_{I_r} G(w) \ dH^{n-m}(w) \leq C_2 r^n,
\]

which establishes (4.7).
Step 3. Finally, we will establish (ii) of our theorem. Since $E_r \subset I_r$, notice that for $w \in E_r$, $F_{a^{-1}}(w)$ is an m-sphere whose radius, $w_1 =: \rho$, has the property that $r/2 \leq \rho \leq 3r/2$. Thus, using (4.3) and (4.4), we obtain

$$
\sup_{F_{a^{-1}}(w)} \left| \frac{u - \bar{u}(a, r)}{r} \right|^p \\
\leq C \int_{F_{a^{-1}}(w)} \rho^{p-m} \left| \nabla \left(\frac{u_w - \bar{u}(a, r)}{r} \right) \right|^p + \rho^{-m} \left| \frac{u_w - \bar{u}(a, r)}{r} \right|^p \ dH^m \\
\leq C \left(\frac{3}{2} \right)^p \rho^{-m} \int_{F_{a^{-1}}(w)} \left(\nabla (u_w) |^p + \left| \frac{u_w - \bar{u}(a, r)}{r} \right|^p \right) \ dH^m \\
\leq C \left(\frac{3}{2} \right)^p 2^{m-p} \rho^{-m} \int_{F_{a^{-1}}(w)} \left(\nabla (u_w) |^p + \left| \frac{u_w - \bar{u}(a, r)}{r} \right|^p \right) \ dH^m \\
\leq C_2 C \left(\frac{3}{2} \right)^p 2^m.
$$

With $K := (C_2 C \left(\frac{3}{2} \right)^p 2^m)^p$, we have $\sup_{F_{a^{-1}}(w)} |u - \bar{u}(a, r)| \leq Kr$ for $w \in E_r$. This, along with (4.8), implies there exists $R_0 > 0$ such that $u > 0$ on $F_{a^{-1}}(w)$ for $w \in E_r, 0 < r < R_0$.

Theorem 4. Let $n \geq 3, n > m$ and $p > m > n - 1 - m \geq 1$. If u is a non-zero element of $W^{1,p}(\mathbb{R}^n)$, then u has a pair of linked spheres of dimensions m and $n - m$ in its support.

Proof. If $u \in W^{1,p}(\mathbb{R}^n)$ is not identically zero, then there exists $a \in \mathbb{R}^n$ such that a is an L^p-Lebesgue point for u and $|\nabla u|$. We will assume without loss of generality, that $\bar{u}(a) > 0$. Applying Theorem 3 we obtain $r_0 > 0$ and a Borel set $E_{r_0} \subset I_{r_0}$ of positive H^{n-m}-measure such that for $w \in E_{r_0} \subset \mathbb{R}^{n-m}, u$ is continuous and positive everywhere on $F_{a^{-1}}(w) = S_{(a', w_2, \ldots, w_{n-m})}(w_1)$. With a slight abuse of the notation introduced at the beginning of Section 4, we let $w'' := (w_2, \ldots, w_{n-m})$ so that we now have

$$F_{a^{-1}}(w) = S_{(a', w'')(1)}. $$

Let $W_a := \bigcup_{w \in E_{r_0}} F_{a^{-1}}(w)$. Since E_{r_0} is H^n-measurable and $JF_a = 1$, we can appeal to the co-area formula to conclude that

$$H^n(W_a) = \int_{E_{r_0}} H^m \left(F_{a^{-1}}(w) \right) \ dH^{n-m}(w) > 0. $$

Note that u is defined and is positive at all points of W_a. For suitable $w \in W_a$, we will construct an $(n - m - 1)$-sphere that will link with $S_{(a', w'')}(1)$ and that will lie in a “radial” $(n - m)$-plane emanating from (a', w'') orthogonal to $Q^{-1}(w'')$. For this purpose define

$$P: \mathbb{R}^n \setminus \bar{B}_{r_0}^{n}(a', w'')(r_0/2) \rightarrow S_{(a', w'')}(1) \quad \text{by} \quad P(x) = \left(a' + \frac{x' - a'}{|x' - a'|}, w'' \right). $$

Observe that P is locally Lipschitz and that $P^{-1}(\theta)$ is independent of w for $\theta \in S_{(a', w')}(1)$. Proceeding as in the proof of Theorem 3 Step 1, with F_a replaced by P, an application of the co-area formula yields that $u \bigcup P^{-1}(\theta) \in W^{1,p}(P^{-1}(\theta))$ for H^m-a.e. $\theta \in S_{(a', w')}(1)$ and that $u \bigcup P^{-1}(\theta)$ is a p-quasicontinuous representative for $u \bigcup P^{-1}(\theta)$; see (4.3) and (4.4). Since $H^n(W_a) > 0$, the co-area formula also
implies that \(H^{n-m}(W_a \cap P^{-1}(\theta)) > 0 \) for \(H^{m}\text{-a.e } \theta \in S^m_{(a',w')} (1) \). Thus, for such \(\theta \), there exists
\begin{equation}
 w \in W_a \cap P^{-1}(\theta)
\end{equation}
such that \(w \) is a Lebesgue point for both \(u \mathcal{L} P^{-1}(\theta) \) and \(\nabla (u \mathcal{L} P^{-1}(\theta)) \). Since \(H^{n-m}(W_a \cap P^{-1}(\theta)) > 0 \) and \(u \mathcal{L} P^{-1}(\theta) > 0 \) on \(W_a \cap P^{-1}(\theta) \), it follows that we can also require \(w \) to have been chosen so that
\begin{equation}
 u \mathcal{L} P^{-1}(\theta)(w) > 0.
\end{equation}
With \(w \) determined by (4.11) and (4.12), it follows that \(u \mathcal{L} P^{-1}(\theta) \) satisfies the hypotheses of Theorem 3 (ii) with the ambient space \(\mathbb{R}^n \) replaced by \(P^{-1}(\theta) \) and with \(F_a \) replaced by \(D : P^{-1}(\theta) \rightarrow \mathbb{R}^1 \), defined by \(D(x) = |x - (a',w')| \). Theorem 3 (ii) provides a number \(0 < \bar{r} < \overline{w}/2 \) and a set \(A \subset (\bar{r}/2,3\bar{r}/2) \) of positive \(H^1 \)-measure such that \(u \mathcal{L} P^{-1}(\theta) \) is defined and positive on each \(D^{-1}(\rho), \rho \in A \). Thus we have that \(u > 0 \) on the \((n-m-1) \)-sphere \(D^{-1}(\rho) \) and \(u > 0 \) on the \(m \)-sphere \(S^m_{(a',w')} (r) \). These spheres are linked, since they are similar to the linked spheres (4.1) and (4.2).

\section*{Theorem 5.} Let \(h : \bar{B}^k \rightarrow \mathbb{R}^n \) be an embedding of the closed ball \(\bar{B}^k \subset \mathbb{R}^{k+1} \) where \(1 \leq k < n \) and \(n \geq 3 \). If \(u \in W^{1,p} (\mathbb{R}^n) \), \(p > \frac{k+1}{2} \) and \(\text{spt } u \subset h(\bar{B}^k) \), then \(u \equiv 0 \).

\textit{Proof.} First, assume \(k \) is even, \(k + 1 < n \), and by contradiction, suppose that \(H^m(\text{spt } u) > 0 \). Writing \(x \in \mathbb{R}^n \) as \(x = (x',x'') \) where \(x' \in \mathbb{R}^{k+1} \), recall that \(Q : \mathbb{R}^n \rightarrow \mathbb{R}^{n-k-1} \) is defined as \(Q(x) := x'' \). Then we have \(H^{k+1}(Q^{-1}(x'') \cap \text{spt } u) > 0 \) for all \(x'' \) in a set \(E \) of positive \(H^{n-k-1} \)-measure and, as in (4.5), \(u \) is a nonzero element of \(W^{1,p}(Q^{-1}(x'')) \) for \(H^{n-k-1} \)-a.e. \(x'' \in E \). Redefine \(E \) to include only such \(x'' \). For \(x'' \in E \), we employ Theorem 4 with \(\mathbb{R}^n \) replaced by the \((k+1) \)-dimensional affine space \(Q^{-1}(x'') \) and \(m \) replaced by \(k/2 \) to conclude that \(u \in W^{1,p}(Q^{-1}(x'')) \) contains a pair of linked spheres, both of dimension \(k/2 \), in its support. Call these spheres \(S_1 \) and \(S_2 \). With \(h \) as in the statement of our theorem, let \(H := h^{-1} \mathcal{L} (Q^{-1}(x'') \cap h(\bar{B}^k)) \); so \(H \) is a homeomorphism of \((Q^{-1}(x'') \cap h(\bar{B}^k)) \) into \(\mathbb{R}^k \). Since \(S_1 \) and \(S_2 \) are linked spheres in \((Q^{-1}(x'') \cap h(\bar{B}^k)) \) and since \(H \) is a homeomorphism, it follows from Definition 1 that \(H(S_1) \) and \(H(S_2) \) are linked in \(\mathbb{R}^k \), which contradicts Theorem 2.

The above proof is easily modified and simpler for the case \(k + 1 = n \). A similar argument holds when \(k \) is odd. \hfill \Box

\section*{References}

Department of Mathematics, California State University Long Beach, Long Beach, California 90840-1001

E-mail address: wziemer@csulb.edu

URL: http://www.csulb.edu/depts/math