Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Local existence of $\mathcal{K}$-sets, projective tensor products, and Arens regularity for $A(E_{1}+\dots +E_{n})$


Author: Colin C. Graham
Translated by:
Journal: Proc. Amer. Math. Soc. 132 (2004), 1963-1971
MSC (2000): Primary 43A15, 43A10; Secondary 46L10
Published electronically: February 6, 2004
MathSciNet review: 2053967
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Theorem. If $X_{1},\dots ,X_{n}$ are perfect compact subsets of the locally compact metrizable abelian group, then there are pairwise disjoint perfect subsets $Y_{1}\subseteq X_{1},\dots ,Y_{n}\subseteq X_{n}$such that (i) $Y_{j}$ is either a Kronecker set or (ii) for some $p_{j}\ge 2$, $Y_{j}$ is a translate of a $K_{p_{j}}$-set all of whose elements have order $p_{j}$, and (iii) $A(Y_{1}+\dots +Y_{n})$ is isomorphic to the projective tensor product $C(Y_{1}) \hat \otimes \cdots \hat \otimes C(Y_{n})$.

This extends what was previously known for groups such as $\mathbb{T}$ or for the case $n=2$to the general locally compact abelian group. Old results concerning the local existence of Kronecker and $K_{p}$-sets are improved.


References [Enhancements On Off] (What's this?)

  • 1. Richard Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839–848. MR 0045941, 10.1090/S0002-9939-1951-0045941-1
  • 2. Paul Civin and Bertram Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847–870. MR 0143056
  • 3. Colin C. Graham, Arens regularity and the second dual of certain quotients of the Fourier algebra, Q. J. Math. 52 (2001), no. 1, 13–24. MR 1820899, 10.1093/qjmath/52.1.13
  • 4. Colin C. Graham and O. Carruth McGehee, Essays in commutative harmonic analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 238, Springer-Verlag, New York-Berlin, 1979. MR 550606
  • 5. Edmond E. Granirer, Day points for quotients of the Fourier algebra 𝐴(𝐺), extreme nonergodicity of their duals and extreme non-Arens regularity, Illinois J. Math. 40 (1996), no. 3, 402–419. MR 1407625
  • 6. Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Bd. 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
    Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
  • 7. Jean-Pierre Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin-New York, 1970 (French). MR 0275043
  • 8. R. Kaufman, A functional method for linear sets, Israel J. Math. 5 (1967), 185–187. MR 0236607
  • 9. Thomas Körner, A pseudofunction on a Helson set. I, Pseudofunctions and Helson sets, Soc. Math. France, Paris, 1973, pp. 3–224. Astérisque, 5. MR 0404974
    Thomas Körner, A pseudofunction on a Helson set. II, Pseudofunctions and Helson sets, Soc. Math. France, Paris, 1973, pp. 231–239. Astérisque, 5. MR 0404976
  • 10. Françoise Lust-Piquard, Éléments ergodiques et totalement ergodiques dans 𝐿^{∞}(Γ), Studia Math. 69 (1980/81), no. 3, 191–225 (French, with English summary). MR 647138
  • 11. Yves Meyer, Recent advances in spectral synthesis, Conference on Harmonic Analysis (Univ. Maryland, College Park, Md., 1971), Springer, Berlin, 1972, pp. 239–253. Lecture Notes in Math., Vol. 266. MR 0394057
  • 12. Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley and Sons), New York-London, 1962. MR 0152834
  • 13. N. Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math. 119 (1967), 51–112. MR 0240564

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 43A15, 43A10, 46L10

Retrieve articles in all journals with MSC (2000): 43A15, 43A10, 46L10


Additional Information

Colin C. Graham
Affiliation: Department of Mathematics, University of British Columbia, RR#1–H-46, Bowen Island, British Columbia, Canada V0N 1G0
Email: ccgraham@alum.mit.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-04-07159-X
Keywords: Arens regularity, bidual, Kronecker set, $K_{p}$-set, locally compact abelian groups, projective tensor product, quotients of the Fourier algebra, set sums, tensor algebra
Received by editor(s): September 12, 2002
Received by editor(s) in revised form: December 23, 2002
Published electronically: February 6, 2004
Additional Notes: Preprints of a draft of this paper were circulated under the title “Arens regularity and related matters for $A(E+F)$”.
Communicated by: Andreas Seeger
Article copyright: © Copyright 2004 American Mathematical Society