EXPONENTS OF CLASS GROUPS
OF REAL QUADRATIC FUNCTION FIELDS

KALYAN CHAKRABORTY AND ANIRBAN MUKHOPADHYAY

(Communicated by Wen-Ching Winnie Li)

Abstract. We show that there are \(q^{l/(2g)} \) polynomials \(D \in \mathbb{F}_q[t] \) with
\(\deg(D) \leq l \) such that the ideal class group of the real quadratic extensions
\(\mathbb{F}_q(t, \sqrt{D}) \) has an element of order \(g \).

1. Introduction

In a recent paper R. Murty [4] shows that if \(g \) is a fixed integer \(\geq 3 \), then the
number of imaginary quadratic fields with absolute discriminant \(\leq x \) and whose
class group contains an element of order \(g \) is \(\gg x^{1/2+1/g} \). He also proved that the
number of such real quadratic fields is \(\gg x^{1/(2g)} \). Let \(q \) be a power of an odd prime.
Let \(R = \mathbb{F}_q[t] \) be the polynomial ring over the finite field \(\mathbb{F}_q \) of \(q \) elements, and let
\(\mathbb{F}_q^* \) be the group of nonzero elements of \(\mathbb{F}_q \). Let \(\mathbb{F}_q(t) \) be the field of fractions of
\(R \). If \(D \in R \) is squarefree, then we consider the quadratic extension \(\mathbb{F}_q(t, \sqrt{D}) \) of
\(\mathbb{F}_q(t) \). For preliminaries and related references we refer to the papers by R. Murty
and Cardon [1], Friesen and van Wamelen [3], and for general number theory in
function fields we refer to the recently published book by M. Rosen [5].

R. Murty and D. Cardon [1] proved that there are \(\gg q^{l/(2g)} \) quadratic extensions
\(\mathbb{F}_q(t, \sqrt{D}) \) of \(\mathbb{F}_q(t) \) with \(\deg(D) \leq l \) whose ideal class group has an element
of order \(g \). This result is the function field analogue of the result of R. Murty for
imaginary quadratic fields.

A quadratic function field \(K = \mathbb{F}_q(t, \sqrt{D}) \) is said to be real if \(\infty \) splits completely
in \(K \), and imaginary otherwise. It follows from proposition 14.6 of Rosen [5, p. 248]
that \(K \) is a real quadratic extension if \(D \) is monic with \(\deg(D) \) even. We prove the
following function field analogue of R. Murty’s [4] result for real quadratic number
fields.

Theorem 1. Let \(q \) be a power of an odd prime, and let \(g \) be a fixed positive integer
\(\geq 3 \). Then there are \(\gg q^{l/(2g)} \) real quadratic extensions \(\mathbb{F}_q(t, \sqrt{D}) \) of the rational
function field \(\mathbb{F}_q(t) \) such that \(\deg(D) \leq l \) and the ideal class group of \(\mathbb{F}_q(t, \sqrt{D}) \) has
an element of order \(g \).
The following result, due to Friesen [2], constructs real quadratic extensions of $\mathbb{F}_q(t)$ whose class group contains an element of order g.

Lemma 1. Let g be a positive integer, and let $m \in R$ be monic. Let $D = m^{2g} + a^2$ with $a \in \mathbb{F}_q^*$. If D is squarefree, then the class group of $\mathbb{F}_q(t, \sqrt{D})$ contains an element of order g.

In fact, as a corollary he also shows that there exist infinitely many such quadratic extensions of $\mathbb{F}_q(t)$ whose class group contains an element of order g. We are going to find a lower bound for the number of squarefree polynomials of the form $D = m^{2g} + a^2$ as m varies over monic polynomials of degree k. We follow the method of Murty and Cardon [1]. We begin by introducing some notation similar to that of [1]. Let $s(h)$ be 1 or 0 according as h is squarefree or not. Also define

$$s_z(h) = \begin{cases} 1 & \text{if } d^2 \text{ does not divide } h \text{ whenever } 1 \leq \deg(d) \leq z, \\ 0 & \text{otherwise.} \end{cases}$$

Our aim is to estimate the sum

$$\sum_{\deg(m) = k} s(m^{2g} + a^2).$$

The following sieving inequality is obvious.

Lemma 2.

$$\sum_m s_z(m^{2g} + a^2) \geq \sum_m s(m^{2g} + a^2) \geq \sum_m s_z(m^{2g} + a^2) - \sum_{\substack{m, p \mid D \geq z \\ m^{2g} + a^2 \equiv 0(p^2)}} 1.$$

We now define a few functions which will be used in the proof. If $h \in R$ has the factorisation $a p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ where $a \in \mathbb{F}_q^*$ and p_i are irreducible monic polynomials in R, then

$$\mu(h) = \begin{cases} 1 & \text{if } h \in \mathbb{F}_q^*, \\ (-1)^r & \text{if } \alpha_i = 1 \text{ for all } i, \\ 0 & \text{otherwise.} \end{cases}$$

For $z \geq 1$ let

$$P(z) = \prod_{\substack{p \text{ irreducible} \\ \deg(p) \leq z}} p$$

and

$$M_z(k) = \sum_{\deg(m) = k} s_z(m^{2g} + a^2).$$

For fixed $h \in R$ we also define

$$\rho(h) = \#\{m \in R/hR : m^{2g} + a^2 \equiv 0(h)\}.$$

We state without proof the following elementary estimate.

Lemma 3. If $\pi(n)$ represents the number of irreducible polynomials in $\mathbb{F}_q[t]$ of degree $n > 0$, then $\pi(n) \leq q^n/n$.

The next lemma gives some properties of the function ρ defined above.
Lemma 4. (i) \(\rho(h_1 h_2) = \rho(h_1) \rho(h_2) \) if \(h_1 \) and \(h_2 \) are coprime.
(ii) \(\rho(p^2) \leq 2g. \)

Proof. The multiplicativity of \(\rho \) is an immediate consequence of the Chinese remainder theorem.

Let us suppose that \(m^{2g} + a^2 \equiv 0(p^2) \). Then the solution must be a lift of a solution modulo \(p \), i.e., \(m = m_1 + ph \), where \(m_1^{2g} + a^2 \equiv 0(p) \). There are at most \(2g \) solutions of this last congruence modulo \(p \). We have

\[
0 \equiv (m_1 + ph)^{2g} + a^2 \equiv m_1^{2g} + a^2 + 2gm_1^{2g-1}ph \pmod{p^2}.
\]

Thus

\[
0 \equiv \frac{m_1^{2g} + a^2}{p} + 2gm_1^{2g-1}h \pmod{p}.
\]

Since \(p \) does not divide \(m \) and \((q, 2) = 1 \), there is a unique solution for \(h \) modulo \(p \). Thus a solution \(m_1 \) modulo \(p \) gives rise to a unique solution modulo \(p^2 \). Therefore \(\rho(p^2) \leq 2g. \)

The following lemma estimates the main term with a specific choice of \(z \).

Lemma 5. We have the lower bound

\[
M_z(k) \gg q^k
\]

for sufficiently large \(k \) and for a specific choice of \(z \) depending on \(k \).

Proof. We have

\[
M_z(k) = \sum_{\text{deg}(m) = k} s_z(m^{2g} + a^2) = \sum_{\text{deg}(m) = k} \sum_{\text{monic} \atop d^2 | (m^{2g} + a^2, P(z))} \mu(d)
\]

\[
= \sum_{d^2 | P(z)} \sum_{m | deg(m) = k} 1.
\]

If \(k \geq \deg(d^2) \), then

\[
\sum_{m | deg(m) = k \atop d^2 | m^{2g} + a^2} 1 = \rho(d^2)q^{k-\deg(d^2)},
\]

and if \(k < \deg(d^2) \), we have

\[
\sum_{m | deg(m) = k \atop d^2 | m^{2g} + a^2} 1 = \rho(d^2).
\]

Thus

\[
M_z(k) = \sum_{d^2 | P(z)} \mu(d) \left\{ \rho(d^2)q^{k-\deg(d^2)} + \rho(d^2) \right\}
\]

\[
= q^k \prod_{d^2 | P(z), \atop \deg(p) \leq z} \left(1 - \rho(p^2)q^{-\deg(p^2)} \right) + \sum_{d | P(z)} O(\rho(d^2)).
\]
Defining \(\nu(d) \) to be the number of monic irreducible polynomials dividing \(d \), we get
\[
\sum_{d \mid P(z)} \rho(d^2) \leq \sum_{d \mid P(z)} (2g)^{\nu(d)} = \prod_{\deg(p) \leq z} (1 + 2g) \leq (3g)^{\deg(z)}.
\]
Hence given any \(\epsilon > 0 \) we can choose \(c \) so that if \(z = c \log(k) \), then
\[
\sum_{d \mid P(z)} \rho(d^2) = O(q^k).
\]
Now
\[
\prod_{\deg(p) \leq z} \left(1 - \rho(p^2)q^{-\deg(p^2)}\right) \geq \prod_{\deg(p) \leq z} \left(1 - 2gq^{-2\deg(p)}\right).
\]
The last product is convergent as \(z \to \infty \). Thus
\[
M_z(k) \gg q^k.
\]

Now we estimate the other term of the inequality of Lemma 2.

Lemma 6.
\[
\sum_{m, p \mid m^a + a^2 \equiv 0(p^2)} 1 = o(q^k).
\]

Proof. We write
\[
\sum_{m, p \mid m^a + a^2 \equiv 0(p^2), \deg(p) > z} 1 = \sum_{m, p \mid m^a + a^2 \equiv 0(p^2), \deg(p) > z} H_p,
\]
where
\[
H_p = \sum_{m^a + a^2 \equiv 0(p^2)} 1.
\]
If \(k \geq \deg(p^2) \), we have \(H_p = \rho(p^2)q^{k - \deg(p^2)} \leq 2gq^{k - \deg(p^2)} \). If \(k < \deg(p^2) \), then \(H_p = \rho(p^2) \leq 2g \). We observe that \(p^2 \) divides \(m^2g + a^2 \), and this implies that \(p \) divides its formal derivative \(2gm^2g - 1m' \), where \(m' \) is the formal derivative of \(m \). Since \((p, m) = 1 \), we conclude that \(p \) divides \(m' \). Thus \(\deg(p) \leq \deg(m') < \deg(m) = k \). Combining all these, we get
\[
\sum_{m, p \mid m^a + a^2 \equiv 0(p^2), \deg(p) > z} 1 = \sum_{z < \deg(p) < k} H_p \leq \sum_{z < \deg(p) < k} 2g(q^{k - \deg(p^2)} + 1) = 2gq^k \sum_{z < \deg(p) < k} q^{-\deg(p^2)} + 2g \sum_{z < \deg(p) < k} 1 \leq \frac{q^{k-z}}{z} + \frac{q^k}{k} = o(q^k).
\]
\(\square \)
3. Proof of the Theorem

We have shown that for a fixed k there are $\gg q^{k}$ monic squarefree polynomials $D = m^{2g} + a^{2}$. Thus there are $\gg q^{l/(2g)}$ such polynomials D with $\deg(D) \leq l$. By Lemma [1] the corresponding real quadratic extensions $\mathbb{F}_{q}(t, \sqrt{D})$ have an element of order g in their class groups. We observe that distinct choices of m give rise to distinct real quadratic function fields $\mathbb{F}_{q}(t, \sqrt{D})$. This completes the proof of the theorem.

Acknowledgment

We thank C. Friesen for making his Ph.D. thesis available to us.

References