Couplings of uniform spanning forests

Author:
Lewis Bowen

Translated by:

Journal:
Proc. Amer. Math. Soc. **132** (2004), 2151-2158

MSC (2000):
Primary 60D05, 05C05, 60B99, 20F32

DOI:
https://doi.org/10.1090/S0002-9939-04-07304-6

Published electronically:
January 22, 2004

MathSciNet review:
2053989

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the existence of an automorphism-invariant coupling for the wired and the free uniform spanning forests on connected graphs with residually amenable automorphism groups.

**[BLPS]**I. Benjamini, R. Lyons, Y. Peres, and O. Schramm,*Uniform Spanning Forests*, Ann. Probab. 29 (2001), no. 1, 1-65. MR**2003a:60015****[BV]**M. E. B. Bekka and A. Valette,*Group cohomology, harmonic functions and the first -Betti number*, Potential Anal. 6 (1997), 313-326. MR**98e:20056****[FM]**T. Feder and M. Mihail,*Balanced Matroids*, Proc. 24th Annual ACM Sympos. Theory Computing (Victoria, BC, Canada), pp. 26-38, ACM Press, New York, 1992.**[L1]**R. Lyons,*A bird's-eye view of uniform spanning trees and forests*, in Microsurveys in Discrete Probability, D. Aldous and J. Propp (eds.), Amer. Math. Soc., Providence, RI, 1998, pp. 135-162. MR**99e:60029****[L2]**R. Lyons,*Determinantal Probability Measures*, preprint.**[KW]**Ilya Kapovich and Daniel T. Wise,*The equivalence of some residual properties of word-hyperbolic groups*, J. Algebra 223 (2000), no. 2, 562-583.MR**2001f:20086****[Ma]**A. I. Mal'cev,*On isomorphic matrix representations of infinite groups*(Russian). Mat. Sbornik 8, 405-422 (1940); Amer. Math. Soc. Transl. (2) 45, 1-18 (1965).MR**2:216d****[O]**A. Yu. Olshanskii,*Almost every group is hyperbolic*, Internat. J. Algebra Comput. 2 (1992), no. 1, 1-17. MR**93j:20068****[Pe]**Robert Pemantle,*Choosing a spanning tree for the integer lattice uniformly*, Ann. Probab. 19 (1991), 1559-1574. MR**92g:60014****[Pi]**Jean-Paul Pier,*Amenable locally compact groups*, Pure and Applied Mathematics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1984. x+418 pp. MR**86a:43001****[S]**E. A. Scott,*A tour around finitely presented infinite simple groups*, Algorithms and classification in combinatorial group theory (Berkeley, 1989), pp. 83-119, Springer-Verlag, New York, 1992. MR**94j:20030****[St]**V. Strassen,*The existence of probability measures with given marginals*, Ann. Math. Statist. 36 (1965), 423-439. MR**31:1693****[We]**B. A. F. Wehrfritz,*Infinite Linear Groups, An account of the group-theoretic properties of infinite groups of matrices*, Ergebnisse der Matematik und ihrer Grenzgebiete, Band 76, Springer-Verlag, New York, Heidelberg, Berlin, 1973. MR**49:436****[Z]**Robert J. Zimmer,*Ergodic theory and semisimple groups*, Monographs in Mathematics, 81. Birkhäuser Verlag, Basel, 1984. x+209 pp. MR**86j:22014**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
60D05,
05C05,
60B99,
20F32

Retrieve articles in all journals with MSC (2000): 60D05, 05C05, 60B99, 20F32

Additional Information

**Lewis Bowen**

Affiliation:
Department of Mathematics, University of California, Davis, California 95616

Email:
lbowen@math.ucdavis.edu

DOI:
https://doi.org/10.1090/S0002-9939-04-07304-6

Keywords:
Spanning trees,
Cayley graphs,
couplings,
harmonic Dirichlet functions,
amenability,
residual amenability

Received by editor(s):
January 30, 2003

Received by editor(s) in revised form:
April 14, 2003

Published electronically:
January 22, 2004

Additional Notes:
This research was supported in part by NSF Vigre Grant No. DMS-0135345

Communicated by:
Richard C. Bradley

Article copyright:
© Copyright 2004
American Mathematical Society