Finite Aomoto-Ito-Macdonald sums

Author:
Ana-Cecilia de la Maza

Translated by:

Journal:
Proc. Amer. Math. Soc. **132** (2004), 2085-2094

MSC (2000):
Primary 33D67; Secondary 05A19, 11L03

DOI:
https://doi.org/10.1090/S0002-9939-04-07305-8

Published electronically:
February 6, 2004

MathSciNet review:
2053981

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present finite truncations of the Aomoto-Ito-Macdonald sums associated with root systems through a two-step reduction procedure. The first reduction restricts the sum from the root lattice to a Weyl chamber; the second reduction arises after imposing a truncation condition on the parameters, and gives rise to a finite sum over a Weyl alcove.

**[AAR]**G. E. Andrews, R. Askey, and R. Roy,*Special Functions*, Encyclopedia of Mathematics and its Applications**71**, Cambridge University Press, Cambridge, 1999. MR**2000g:33001****[A]**K. Aomoto,*On elliptic product formulas for Jackson integrals associated with reduced root systems*, J. Algebraic Combin.**8**(1998), 115-126. MR**2000b:33012****[B]**N. Bourbaki,*Groupes et algèbres de Lie*, Chapitres 4-6, Hermann, Paris, 1968.MR**39:1590****[D]**J. F. van Diejen,*On certain multiple Bailey, Rogers, and Dougall type summation formulas*, Publ. Res. Inst. Math. Sci.**33**(1997), 483-508. MR**98j:33011****[DS]**J. F. van Diejen and V. P. Spiridonov,*An elliptic Macdonald-Morris conjecture and multiple modular hypergeometric sums*, Math. Res. Lett.**7**(2000), 729-746.MR**2002m:33022****[DV]**J. F. van Diejen and L. Vinet,*The quantum dynamics of the compactified trigonometric Ruijsenaars-Schneider model*, Commun. Math. Phys.**197**(1998), 33-74.MR**2000k:81123****[GR]**G. Gasper and M. Rahman,*Basic Hypergeometric Series*, Encyclopedia of Mathematics and its Applications**35**, Cambridge Univ. Press, Cambridge, 1990. MR**91d:33034****[G1]**R. A. Gustafson,*Multilateral summation theorems for ordinary and basic hypergeometric series in*, SIAM J. Math. Anal.**18**(1987), 1576-1596. MR**90e:33015****[G2]**-,*The Macdonald identities for affine root systems of classical type and hypergeometric series very-well-poised on semisimple Lie algebras*, Ramanujan International Symposium on Analysis (Pune, 1987), 185-224, Macmillan of India, New Delhi, 1989.MR**92k:33015****[I1]**M. Ito,*A theta product formula for Jackson integrals associated with root systems*, Proc. Japan Acad. Ser. A Math. Sci.**73**(1997), 60-61.MR**99b:33043****[I2]**-,*On a theta product formula for Jackson integrals associated with root systems of rank two*, J. Math. Anal. Appl.**216**(1997), 122-163.MR**99e:33023****[I3]**-,*Symmetry classification for Jackson integrals associated with irreducible root systems*, Compositio Math.**129**(2001), 325-340. MR**2002m:33021****[K]**J. Kaneko,*-Selberg integrals and Macdonald polynomials*, Ann. Sci. École Norm. Sup. (4)**29**(1996), 583-637.MR**98k:33026****[M1]**I. G. Macdonald,*Affine root systems and Dedekind's**-function*, Invent. Math.**15**(1972), 91-143. MR**50:9996****[M2]**-,*The Poincaré series of a Coxeter group*, Math. Ann.**199**(1972), 161-174.MR**48:433****[M3]**-,*Some conjectures for root systems*, SIAM J. Math. Anal.**13**(1982), 988-1007.MR**84h:17006a****[M4]**-,*A formal identity for affine root systems*, preprint, 1996.**[M]**S. C. Milne,*Basic hypergeometric series very well-poised in*, J. Math. Anal. Appl.**122**(1987), 223-256. MR**88h:33007****[ML]**S. C. Milne and G. M. Lilly,*Consequences of the**and**Bailey transform and Bailey lemma*, Formal Power Series and Algebraic Combinatorics (Montreal, PQ, 1992). Discrete Math.**139**(1995), 319-346.MR**96g:33025****[O]**E. M. Opdam,*Some applications of hypergeometric shift operators*, Invent. Math.**98**(1989), 1-18. MR**91h:33024****[R]**H. Rosengren,*Karlsson-Minton type hypergeometric functions on the root system*, J. Math. Anal. Appl.**281**(2003), 332-345.**[S]**M. Schlosser,*Multidimensional matrix inversions and multiple basic hypergeometric series associated to root systems*, Special Functions and Differential Equations (Madras, 1997), 25-30, Allied Publ., New Delhi, 1998.MR**99i:33024**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
33D67,
05A19,
11L03

Retrieve articles in all journals with MSC (2000): 33D67, 05A19, 11L03

Additional Information

**Ana-Cecilia de la Maza**

Affiliation:
Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile

Email:
anace@inst-mat.utalca.cl

DOI:
https://doi.org/10.1090/S0002-9939-04-07305-8

Keywords:
Multivariate basic hypergeometric series,
summation formulas,
root systems

Received by editor(s):
December 13, 2002

Received by editor(s) in revised form:
April 3, 2003, and April 11, 2003

Published electronically:
February 6, 2004

Additional Notes:
This work was supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grant # 1010205 and the Programa formas cuadráticas of the Universidad de Talca.

Communicated by:
John R. Stembridge

Article copyright:
© Copyright 2004
American Mathematical Society