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GENERALIZED FUNCTION ALGEBRAS
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(Communicated by David R. Larson)

Abstract. A topological description of various generalized function algebras
over corresponding basic locally convex algebras is given. The framework
consists of algebras of sequences with appropriate ultra(pseudo)metrics defined
by sequences of exponential weights. Such an algebra with embedded Dirac’s
delta distribution induces the discrete topology on the basic space.

1. Introduction

After Schwartz’ “impossibility result” [18] for algebras of generalized functions
with a prescribed list of (natural) assumptions, several new approaches have ap-
peared with the aim of applications in nonlinear problems. We refer to the recent
monograph [9] for the historical background as well as for the list of relevant ref-
erences, mainly for algebras of generalized functions today called Colombeau type
algebras (see [1], [2], [3], [8], [12]). Colombeau and all other successors introduce
algebras of generalized functions through purely algebraic methods. By now, these
algebras have become an important tool in the theory of PDEs, stochastic analysis,
differential geometry and general relativity. We show that such algebras fit in the
general theory of well-known sequence spaces forming appropriate algebras. These
classes of algebras of sequences are simply determined by a locally convex algebra
E, and a sequence of weights (or sequence of sequences), which serve to construct
ultra(pseudo)metrics.

From the beginning, the topological questions concerning such algebras were
important. We refer to the papers [2] where the classical topology and a uniform
structure were introduced in order to consider generalized functions as smooth func-
tions in appropriate quotient spaces. Then the sharp topology [13] was introduced
in connection with the well-posedness of the Carleman system with measures as
initial data. Later it was independently reintroduced and analyzed in [17], where
the name “sharp topology” appeared. It remained an open question whether the in-
troduced topologies were “good enough”, because they induced always the discrete
topology on the underlying space.

We show that the topology of a Colombeau type algebra containing Dirac’s
delta distribution δ as an embedded Colombeau generalized function must induce
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the discrete topology on the basic space E. In the authors’ opinion, this result is
somehow in analogy to Schwartz’ “impossibility result” concerning the product of
distributions, as explained in Remark 4.2.

We mention that distribution, ultradistribution and hyperfunction type spaces
can be embedded in corresponding algebras of sequences with exponential weights
(cf. [4]). More general concepts of generalized functions not anticipating embed-
dings as well as regularity properties of generalized functions can be found in [16]
and [11].

Let us point out that our sequential approach presents some analogy with non-
standard analysis, which can be viewed as refinement of an ultrapower construction.
Therefore, the sequences of weights we consider are related to some infinitesimal
which appears in the non-Archimedean field of Robinson asymptotic numbers and
in spaces of asymptotic functions. We refer the reader to [15, 10] for an introduction
to nonstandard analysis and the related question of non-Archimedean fields, and to
[14, 19] for a nonstandard approach to nonlinear theories of generalized functions
and applications.

To be short, we give most examples only for spaces of functions defined on Rs,
although the generalization to an open subset of Rs is straightforward.

2. General construction

Consider a positive sequence r = (rn)n ∈ (R+)N decreasing to zero. (We use
R+ = [ 0,∞) and N = { 0, 1, 2, ... }.) If p is a seminorm on a vector space E, we
define for f = (fn)n ∈ EN,

||| f |||p,r = lim sup
n→∞

(
p(fn)

)rn
with values in R+ = R+ ∪ {∞}. Denote ẼN = {f ∈ EN | ||| f |||p,r <∞}.

Let (Eµν , p
µ
ν )µ,ν∈N be a family of semi-normed algebras over R or C such that

∀µ, ν ∈ N : Eµ+1
ν ↪→ Eµν and Eµν+1 ↪→ Eµν (resp. Eµν ↪→ Eµν+1 ) ,

where ↪→ means continuously embedded. (For the ν index we consider inclusions in
the two directions.) Then let

←−
E = proj lim

µ→∞
proj lim
ν→∞

Eµν = proj lim
ν→∞

Eνν , (resp.
−→
E =

proj lim
µ→∞

ind lim
ν→∞

Eµν ). Such projective and inductive limits are usually considered

with norms instead of seminorms, and with the additional assumption that in the
projective case sequences are reduced, while in the inductive case for every µ ∈ N
the inductive limit is regular, i.e., a set A ⊂ ind lim

ν→∞
Eµν is bounded iff it is contained

in some Eµν and bounded there.
Define (with p ≡ (pµν )ν,µ)

←−Fp,r =
{
f ∈ ←−EN

∣∣∣ ∀µ, ν ∈ N : ||| f |||pµν , r <∞
}
,

←−Kp,r =
{
f ∈ ←−EN

∣∣∣ ∀µ, ν ∈ N : ||| f |||pµν , r = 0
}

(resp.
−→F p,r =

⋂
µ∈N

−→F µ
p,r ,

−→F µ
p,r =

⋃
ν∈N

{
f ∈ (Eµν )N

∣∣∣ ||| f |||pµν ,r <∞} ,

−→K p,r =
⋂
µ∈N

−→Kµp,r ,
−→Kµp,r =

⋃
ν∈N

{
f ∈ (Eµν )N

∣∣∣ ||| f |||pµν ,r = 0
}

) .
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Proposition–Definition 2.1.
(i) Writing ←→· for both, ←−· or −→· , we have that

←→F p,r is an algebra and
←→K p,r is

an ideal of
←→F p,r; thus,

←→G p,r =
←→F p,r/

←→K p,r is an algebra.
(ii) For every µ, ν ∈ N, dpµν : (Eµν )N × (Eµν )N → R+ defined by dpµν (f, g) = ||| f −

g |||pµν ,r is an ultrapseudometric on (Eµν )N. Moreover, (dpµν )µ,ν induces a topological
algebra1 structure on

←−Fp,r such that the intersection of the neighborhoods of zero
equals

←−Kp,r.
(iii) From (ii),

←−Gp,r =
←−Fp,r/

←−Kp,r becomes a topological algebra (over generalized
numbers Cr = G|·|,r) whose topology can be defined by the family of ultrametrics
(d̃pµν )µ,ν where d̃pµν ([f ], [g]) = dpµν (f, g), [f ] standing for the class of f .

(iv) If τµ denote the inductive limit topology on Fµp,r =
⋃
ν∈N((Ẽµν )N, dµ,ν), µ ∈ N,

then
−→F p,r is a topological algebra for the projective limit topology of the family

(Fµp,r, τµ)µ.

Proof. We use the following properties of ||| · |||:
∀x, y ∈ EN : |||x+ y ||| ≤ max(|||x |||, ||| y |||) ,(1)

∀x, y ∈ EN : |||x · y ||| ≤ |||x ||| · ||| y ||| ,(2)

∀λ ∈ C∗, x ∈ EN : |||λx ||| = |||x |||.(3)

They are consequences of basic properties of seminorms and of p(xn + yn)rn ≤
2rn max(p(xn), p(yn))rn for (1). Using the above three inequalities, (i)–(iv) follow
straightforwardly from the respective definitions. �

Example 2.1 (Colombeau-generalized numbers and ultracomplex numbers). Take
Eµν = R or C, and pµν = | · | (absolute value) for all µ, ν ∈ N. Then, for rn = 1

logn ,
we get the ring of Colombeau’s numbers R or C.

With the sequence rn = n−1/m for some fixed m > 0, we obtain rings of ultra-
complex numbers Cp!

m

(cf. [4]).

Example 2.2. Consider a Sobolev space E = W s,∞(Ω) for some s ∈ N. The
corresponding Colombeau-type algebra is defined by GW s,∞ = F/K, where

F =
{
u ∈ (W s,∞)N | lim sup ‖un‖

1
logn

s,∞
<∞

}
,

K =
{
u ∈ (W s,∞)N | lim sup ‖un‖

1
logn

s,∞
= 0

}
.

Example 2.3 (simplified Colombeau algebra). Take Eµν = C∞(Rs),

pµν (f) = sup
|α|≤ν, |x|≤µ

|f (α)(x)|,

and rn = 1
log n . Then,

←−Gp,r =
←−Fp,r/

←−Kp,r is the simplified Colombeau algebra.
The full algebra of Colombeau-generalized functions can be described in an anal-

ogous but more complicated setting, as will be explained in a forthcoming paper
(see [5], Example 5).

1over (CN, ||| · ||||·|), not over C: scalar multiplication is not continuous because of (3).
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3. Completeness

Without assuming completeness of
←→
E , we have

Proposition 3.1.
(i)
←−Fp,r is complete.

(ii) Assume that for every µ ∈ N, a subset of
−→F µp,r is bounded iff it is a bounded

subset of (Eµν )N for some ν ∈ N. Then
−→F p,r is sequentially complete.

Proof. If (fm)m∈N ∈
←−Fp,r is a Cauchy sequence, then there exists a strictly increas-

ing sequence (mµ)µ∈N of integers such that

∀µ ∈ N ∀ k, ` ≥ mµ : lim sup
n→∞

pµµ
(
fkn − f `n

)rn
<

1
2µ

.

Thus, there exists a strictly increasing sequence (nµ)µ∈N of integers such that

∀µ ∈ N ∀ k, ` ∈ [mµ,mµ+1] ∀n ≥ nµ : pµµ
(
fkn − f `n

)rn
<

1
2µ

.

(Restricting k, ` to [mµ,mµ+1] allows us to take nµ independent of k, `.) Let µ(n) =
sup {µ | nµ ≤ n }, and consider the diagonalized sequence

f̄ = (fmµ(n)
n )n , i.e., f̄n =


fm0
n if n ∈ [n0, n1)
...

fmµn if n ∈ [nµ, nµ+1)
... .

Now let us show that fm → f̄ in
←−Fp,r as m → ∞. Indeed, for ε and pµ0

ν given,
choose µ > µ0, ν such that 1

2µ <
1
2ε. Since pµν is increasing in both indices, we have

for m > mµ (say m ∈ [mµ+s,mµ+s+1]) :

pµ0
ν (fmn − f̄n)rn ≤ pµµ(fmn − fmµ(n)

n )rn

≤ pµµ(fmn − fmµ+s+1
n )rn +

µ(n)−1∑
µ′=µ+s+1

pµ
′

µ′(f
mµ′
n − fmµ′+1

n )rn

and for n > nµ+s, we have of course n ≥ nµ(n). Thus finally

pµ0
ν (fmn − f̄n)rn <

µ(n)∑
µ′=µ+s

1
2µ′

<
2
2µ

< ε

and therefore fm → f̄ in
←−F .

For (fm)m a Cauchy net in
−→F p,r, the proof requires some additional considera-

tions. We know that for every µ there is ν(µ) such that

pµν(µ) (fmn − fpn)rn < εµ,

where (εµ)µ decreases to zero. For every µ we can choose ν(µ) so that pµν(µ) ≤
pµ+1
ν(µ+1). Now by the same arguments as above, we prove the completeness in the

case of
−→F p,r. �
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4. General remarks on embeddings of duals

Under mild assumptions on
←→
E , we show that our algebras of (classes of) se-

quences contain embedded elements of strong dual spaces
←→
E ′. First we consider

the embedding of the delta distribution. We show that general assumptions on test
spaces or on a delta sequence lead to the non-boundedness of a delta sequence in←→
E .

We consider F = C0(Rs), the space of continuous functions with the projective
topology given by sup norms on the balls B(0, n), n ∈ N∗, or F = K(Rs) =
ind limn→∞(Kn, ‖ · ‖∞), where

Kn = {φ ∈ C(Rs) | suppψ ⊂ B(0, n) } .
(Recall that K′(Rs) is the space of Radon measures.)

We assume that
←→
E is dense in F and

←→
E ↪→ F . This implies that δ ∈ F ′ ⊂ ←→E ′.

Proposition 4.1.
(i) For F = C0(Rs), a sequence (δn)n with elements in

←→
E ∩ (C0(Rs))′ such that

∃M > 0, ∀n ∈ N : sup
|x|>M

|δn(x)| < M ,

converging weakly to δ in
←→
E ′, cannot be bounded in

←→
E . With F = K(Rs), if for

(δn)n ∈ (
←→
E )N there exists a compact set K so that supp δn ⊂ K, n ∈ N∗, then this

sequence cannot be bounded in
←→
E .

(ii) Assume:
1. Any φ ∈ ←→E defines an element of F ′ by ψ 7→

∫
Rs φ(x)ψ(x) dx.

2. If (φn)n is a bounded sequence in
←→
E , then sup

n∈N,x∈Rs
|φn(x)| <∞.

Then, if
←→
E is sequentially weakly dense in

←→
E ′ and (δn)n is a sequence in

←→
E

converging weakly to δ in
←→
E ′, then (δn)n cannot be bounded in

←→
E .

Proof. (i) We will prove the assertion only for F = C0(Rs). Let us show that
(δn)n is not bounded in

←→
E . First consider

←−
E. Boundedness of (δn)n in

←−
E implies:

∀µ ∈ N, ∀ν ∈ N, ∃C1 > 0, ∀n ∈ N : pµν (δn) < C1. Continuity of
←−
E ↪→ C0(Rs) gives

∀k ∈ N, ∃µ ∈ N, ∃ν ∈ N, ∃C2 > 0, ∀ψ ∈ ←−E : sup
|x|<k

|ψ(x)| ≤ C2 p
µ
ν (ψ) .

It follows that ∃C > 0, ∀n ∈ N : supx∈Rs |δn(x)| < C, which is impossible. To
show this, take ψ ∈ C0(Rs) so that it is positive, ψ(0) = C + 1, and

∫
ψ < 1. The

assumption δn ∈ (C0(Rs))′ implies that it acts on C0(Rs) by ψ 7→
∫
δn(x)ψ(x) dx.

This gives C + 1 = ψ(0)←
∣∣∫ δnψ dx

∣∣ ≤ C.
For
−→
E , simply exchange ∀ν ↔ ∃ν in the above.

(ii) Assumption 2 and the boundedness of (δn)n in
←→
E would imply that ∃C >

0, ∀n ∈ N : supx∈Rs |δn(x)| < C. Now, by assumption 1, we conclude the proof as
in part (i). �

Remark 4.1. One can take for
←→
E one of Schwartz’ test function spaces or a Beurling

or Roumieau test function space of ultradifferentiable functions. Since the delta
distribution lives on all functions that are continuous at zero, one can consider also
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F and
←→
E to consist of holomorphic functions with appropriate topologies. This was

the reason for considering C0, although there are many classes of test spaces which
would imply the necessary accommodation of conditions of the previous assertion.

Thus, the appropriate choice of a sequence r decreasing to 0 appears to be
important to have at least δ embedded into the corresponding algebra. It can be
chosen such that for all µ ∈ N and all ν ∈ N (resp. some ν ∈ N in the

−→
E case),

lim supn→∞ pµν (δn)rn = Aµν and ∃µ0, ν0 : Aµ0
ν0
6= 0.

So the embedding of duals into corresponding algebras is realized on the basis
of two demands:

(1)
←→
E is weakly sequentially dense in

←→
E ′.

(2) There exists a sequence (rn)n decreasing to zero, such that for all f ∈ ←→E ′

and corresponding sequence (fn)n in
←→
E , fn → f weakly in

←→
E ′, we have

for all µ and all ν (resp. some ν), lim sup
n→∞

pµν (fn)rn <∞.

Remark 4.2. In the definition of sequence spaces
←→F p,r, we assumed rn ↘ 0 as

n → ∞. In principle, one could consider more general sequences of weights. For
example, if rn ∈ (α, β), 0 < α < β, then

←→
E can be embedded, in the set-theoretical

sense, via the canonical map f 7→ (f)n (fn = f). Moreover, this embedding is
continuous (thus, topological embedding). It is clear for the projective case

←−
E. For

the inductive case
−→
E , the assumption that for every µ the inductive limit is regular

implies the continuity. Indeed, if there is a function f and a sequence (fn)n in Eµν
such that lim sup pµν (fn − f) < 1, then

||| fn − f |||pµν ,r = lim sup
n→∞

(
pµν (fn − f)

)rn ≤ ( lim sup
n→∞

pµν (fn − f)
)lim inf
n→∞

rn

and pµν (fn − f)→ 0 implies ||| fn − f |||pµν ,r → 0.
If rn →∞,

←→
E is no more included in

←→F p,r.
In the case we consider (rn → 0), the induced topology on

←→
E is obviously a

discrete topology. But this is necessarily so, since we want to have “divergent”
sequences in

←→F p,r. Thus, in our construction, in order to have an appropriate
topological algebra containing “δ”, it is unavoidable that (rn)n tends to zero and
so our generalized topological algebra induces a discrete topology on the original
algebra

←→
E .

In some sense, this is the price to pay, in our construction, to overcome the con-
clusion of Schwartz’ impossibility statement for multiplication of distributions [18].
Of course, our arguments are completely different and are not related to Schwartz’
arguments.

5. Sequences of scales

The analysis of previous sections can be extended to the case where we consider
a sequence (rm)m of decreasing null sequences (rmn )n, satisfying one of the following
additional conditions:

∀m,n ∈ N : rm+1
n ≥ rmn or ∀m,n ∈ N : rm+1

n ≤ rmn .
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Then, in the first (resp. second) case, let
←→F p,r =

⋂
m∈N

←→F p,rm ,
←→K p,r =

⋃
m∈N

←→K p,rm ,

(resp.
←→F p,r =

⋃
m∈N

←→F p,rm ,
←→K p,r =

⋂
m∈N

←→K p,rm ), where p = (pµν )ν,µ .

Proposition 5.1. With the above notation,
←→G p,r =

←→F p,r/
←→K p,r is an algebra.

Proof. In the first case, rm+1 ≥ rm =⇒ ||| f |||rm+1 ≥ ||| f |||rm if p(fn) ≥ 1, hence
Fm+1 ⊂ Fm, and conversely, p(kn) ≤ 1  ||| k |||rm+1 ≤ ||| k |||rm  Km+1 ⊃ Km.
Thus, F is obviously a subalgebra. To see that K is an ideal, take (k, f) ∈ K × F .
Then ∃m : k ∈ Km, but also f ∈ Fm, in which Km is an ideal. Thus k ·f ∈ Km ⊂ K.

If rm is decreasing, Fm+1 ⊃ Fm and Km+1 ⊂ Km. Because of this inclusion
property, F is a subalgebra. To prove that K is an ideal, take (k, f) ∈ K × F , i.e.,
∀m : k ∈ Km, and ∃m′ : f ∈ Fm′ . We need that ∀m : k · f ∈ Km. Indeed, if
m ≤ m′, then Km′ ⊂ Km; thus k · f ∈ Km′ · Fm′ ⊂ Km′ ⊂ Km, and if m′ ≤ m, then
Fm′ ⊂ Fm; thus k · f ∈ Km · Fm′ ⊂ Km · Fm ⊂ Km. �

Example 5.1. rmn = 1/| log am(n)|, where (am : N→ R+)m∈Z is an asymptotic
scale, i.e., ∀m ∈ Z : am+1 = o(am), a−m = 1/am, ∃M ∈ Z : aM = o(a2

m). This
gives back the asymptotic algebras of [6].

Example 5.2. Colombeau-type ultradistribution and periodic hyperfunction alge-
bras will be considered in [4].

Example 5.3. rm = χ[0,m], i.e., rmn = 1 if n ≤ m and 0 else, gives the Egorov-type
algebras [7], where the “subalgebra” contains everything, and the ideal contains
only stationary null sequences (with the convention 00 = 0).

In the case of sequences of scales our second demand of the previous section
should read: “There exists a sequence ((rmn )n)m of sequences decreasing to 0, such
that for all f ∈ ←→E ′ and the corresponding sequence (fn)n in

←→
E , fn → f weakly in

←→
E ′, there exists anm0 such that for all µ and all ν (resp. some ν), lim sup

n→∞
pµν (fn)r

m0
n

<∞.”
Topological properties for such algebras are a little more complex, but the ideas

of constructing families of ultra(pseudo)metrics are now clear. An important fea-
ture of our general concept is to show how various classes of ultradistribution and
hyperfunction type spaces can be embedded in a natural way into sequence space
algebras as considered in Section 2, [4].
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arXiv.org/abs/math.FA/0210249.
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