Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniqueness of dilation invariant norms


Authors: E. Moreno and A. R. Villena
Translated by:
Journal: Proc. Amer. Math. Soc. 132 (2004), 2067-2073
MSC (2000): Primary 46E30, 46H40
DOI: https://doi.org/10.1090/S0002-9939-04-07327-7
Published electronically: January 29, 2004
MathSciNet review: 2053979
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\delta_a$ be a nontrivial dilation. We show that every complete norm $\Vert\cdot\Vert$ on $L^1(\mathbb{R} ^N)$ that makes $\delta_a$ from $(L^1(\mathbb{R} ^N),\Vert\cdot\Vert)$ into itself continuous is equivalent to $\Vert\cdot\Vert _1$. $\delta_a$ also determines the norm of both $C_0(\mathbb{R} ^N)$ and $L^p(\mathbb{R} ^N)$ with $1<p<\infty$ in a weaker sense. Furthermore, we show that even all the dilations do not determine the norm on $L^\infty(\mathbb{R} ^N)$.


References [Enhancements On Off] (What's this?)

  • 1. H. G. Dales, Banach algebras and automatic continuity. London Mathematical Society Monographs, New Series, 24, The Clarendon Press, Oxford University Press, New York, 2000. MR 2002e:46001
  • 2. J. Extremera, J. F. Mena, and A. R. Villena, Uniqueness of the topology on $L^1(G)$, Studia Math. 150 (2002), 163-173. MR 2004a:43003
  • 3. J. Extremera, J. F. Mena, and A. R. Villena, Uniqueness of norm on $L^p(G)$ and $C(G)$ when $G$ is a compact group. J. Funct. Anal. 197 (2003), 212-227.
  • 4. J. Extremera and A. R. Villena, Uniqueness of norm on $L^1(G)$ when $G$ is a Moore group, preprint, 2002.
  • 5. K. Jarosz, Uniqueness of translation invariant norms, J. Funct. Anal. 174 (2000), 417-429. MR 2001e:46092
  • 6. B. E. Johnson, The uniqueness of the (complete) norm topology, Bull. Amer. Math. Soc. 73 (1967), 537-539. MR 35:2142
  • 7. B. E. Johnson, Continuity of homomorphisms of Banach $G$-modules, Pacific J. Math. 120 (1985), 111-121. MR 87c:46057
  • 8. A. R. Villena, Uniqueness of the topology on spaces of vector-valued functions, J. London Math. Soc. 64 (2001), 445-456. MR 2002g:46056
  • 9. G. S. Woodward, Translation-invariant linear forms on $C_0(G)$, $C(G)$, $L^p(G)$ for noncompact groups, J. Funct. Anal. 16 (1974), 205-220. MR 49:9540

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46E30, 46H40

Retrieve articles in all journals with MSC (2000): 46E30, 46H40


Additional Information

E. Moreno
Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

A. R. Villena
Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Email: avillena@ugr.es

DOI: https://doi.org/10.1090/S0002-9939-04-07327-7
Received by editor(s): November 19, 2002
Received by editor(s) in revised form: April 1, 2003
Published electronically: January 29, 2004
Additional Notes: The second author was supported by MCYT Grant BFM2003-01681.
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society