-spaces and finite unions

Author:
Alexander Arhangel'skii

Translated by:

Journal:
Proc. Amer. Math. Soc. **132** (2004), 2163-2170

MSC (2000):
Primary 54D20; Secondary 54F99

DOI:
https://doi.org/10.1090/S0002-9939-04-07336-8

Published electronically:
February 9, 2004

MathSciNet review:
2053991

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article is a continuation of a recent paper by the author and R. Z. Buzyakova. New results are obtained in the direction of the next natural question: how complex can a space be that is the union of two (of a finite family) ``nice" subspaces? Our approach is based on the notion of a -space introduced by E. van Douwen and on a generalization of this notion, the notion of -space. It is proved that if a space is the union of a finite family of subparacompact subspaces, then is an -space. Under , it follows that if a separable normal -space is the union of a finite number of subparacompact subspaces, then is Lindelöf. It is also established that if a regular space is the union of a finite family of subspaces with a point-countable base, then is a -space. Finally, a certain structure theorem for unions of finite families of spaces with a point-countable base is established, and numerous corollaries are derived from it. Also, many new open problems are formulated.

**1.**A. V. Arhangel'skii,*-spaces and covering properties.*Submitted, 2002.**2.**A. V. Arhangel'skii and R. Z. Buzyakova,*Addition theorems and**-spaces.*Comment. Math. Univ. Carolinae 43,4 (2002), 653-663.**3.**C. R. Borges and A. C. Wehrly,*A study of**-spaces.*Topology Proc. 16 (1991), 7-15. MR**94a:54059****4.**D. K. Burke,*A note on R. H. Bing's example G.*In: Proc. V.P.I. Topology Conference, Lecture Notes in Math., vol. 375, Springer-Verlag, Berlin, 1974, pp. 47-52. MR**51:11426****5.**D. K. Burke,*Covering properties.*In: K. Kunen and J. Vaughan, Eds., Handbook of Set-theoretic Topology, Chapter 9, 347-422. North-Holland, Amsterdam, New York, Oxford, 1984. MR**86e:54030****6.**R. Z. Buzyakova,*On**-property of strong**-spaces.*Comment. Math. Universitatis Carolinae 43 (2002), 493-495. MR**2003j:54021****7.**J. Chaber,*Metacompactness and the class MOBI.*Fund. Math. 91 (1976), 211-217. MR**54:3646****8.**E. K. van Douwen and W. F. Pfeffer,*Some properties of the Sorgenfrey line and related spaces.*Pacific J. Math. 81:2 (1979), 371-377. MR**80h:54027****9.**E. K. van Douwen and H. H. Wicke,*A real, weird topology on reals.*Houston Journal of Mathematics 13:1 (1977), 141-152. MR**55:6390****10.**R. Engelking,*General Topology.*Polish Scientific Publishers, Warsaw, 1977. MR**58:18316b****11.**M. Ismail and A. Szymanski,*On locally compact Hausdorff spaces with finite metrizability number.*Topology Appl. 114:3 (2001), 285-293. MR**2002f:54003****12.**E. Michael and M. E. Rudin,*Another note on Eberlein compacts.*Pacific J. Math. 72 (1977), 497-499. MR**57:17584b****13.**A. J. Ostaszewski,*Compact**-metric spaces are sequential.*Proc. Amer. Math. Soc. 68 (1978), 339-343. MR**57:7532****14.**M. E. Rudin,*Dowker spaces.*In: K. Kunen and J. Vaughan, Eds., Handbook of Set-theoretic Topology, Chapter 17, 761-780. North-Holland, Amsterdam, New York, Oxford, 1984. MR**86c:54018****15.**H. H. Wicke and J. M. Worrell, Jr.,*Point-countability and compactness.*Proc. Amer. Math. Soc. 55 (1976), 427-431. MR**53:4001**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
54D20,
54F99

Retrieve articles in all journals with MSC (2000): 54D20, 54F99

Additional Information

**Alexander Arhangel'skii**

Affiliation:
Department of Mathematics, 321 Morton Hall, Ohio University, Athens, Ohio 45701

Email:
arhangel@math.ohiou.edu

DOI:
https://doi.org/10.1090/S0002-9939-04-07336-8

Keywords:
$D$-space,
point-countable base,
extent,
subparacompact space,
Lindel\"of degree,
$aD$-space

Received by editor(s):
October 21, 2002

Received by editor(s) in revised form:
April 14, 2003

Published electronically:
February 9, 2004

Communicated by:
Alan Dow

Article copyright:
© Copyright 2004
American Mathematical Society