The dual spectral set conjecture

Author:
Steen Pedersen

Translated by:

Journal:
Proc. Amer. Math. Soc. **132** (2004), 2095-2101

MSC (2000):
Primary 42A99, 42C99, 51M04, 52C99

DOI:
https://doi.org/10.1090/S0002-9939-04-07403-9

Published electronically:
February 6, 2004

MathSciNet review:
2053982

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that where are real numbers such that and The union is not assumed to be disjoint. It is shown that the translates , , tile the real line for some bounded measurable set if and only if the exponentials , , form an orthogonal basis for some bounded measurable set

**[Fug74]**Bent Fuglede,*Commuting self-adjoint partial differential operators and a group theoretic problem*, J. Funct. Anal.**16**(1974), 101-121. MR**57:10500****[IKT01]**Alex Iosevich, Nets Katz, and Terrence Tao,*Convex bodies with a point of curvature do not have Fourier bases*, Amer. J. Math.**123**(2001), 115-120. MR**2002g:42011****[JP87]**Palle E. T. Jorgensen and Steen Pedersen,*Harmonic analysis on tori*, Acta Appl. Math.**10**(1987), 87-99. MR**89e:22010****[JP92]**Palle E. T. Jorgensen and Steen Pedersen,*Spectral theory for Borel sets in of finite measure*, J. Funct. Anal.**107**(1992), 74-104. MR**93k:47005****[JP94]**Palle E. T. Jorgensen and Steen Pedersen,*Harmonic analysis and fractal limit-measures induced by representations of a certain -algebra*, J. Funct. Anal.**125**(1994), 90-110. MR**95i:47067****[JP99]**Palle E. T. Jorgensen and Steen Pedersen,*Spectral pairs in Cartesian coordinates*, J. Fourier Anal. Appl.**5**(1999), 285-302. MR**2002d:42027****[KL96]**Mihail N. Kolountzakis and Jeffrey C. Lagarias,*Structure of tilings of the line by a function*, Duke Math. J.**82**(1996), 653-678. MR**97d:11124****[Kol00]**Mihail N. Kolountzakis,*Packing, tiling, orthogonality and completeness*, Bull. London Math. Soc.**32**(2000), 589-599. MR**2001g:52030****[ab01]**Izabella aba,*Fuglede's conjecture for a union of two intervals*, Proc. Amer. Math. Soc.**129**(2001), 2965-2972. MR**2002d:42007****[LS01]**Jeffrey C. Lagarias and Sándor Szabó,*Universal spectra and Tijdeman's conjecture on factorization of cyclic groups*, J. Fourier Anal. Appl.**7**(2001), 63-70. MR**2002e:11107****[LW96]**Jeffrey C. Lagarias and Yang Wang,*Tiling the line with translates of one tile*, Invent. Math.**124**(1996), 341-365. MR**96i:05040****[LW97]**Jeffrey C. Lagarias and Yang Wang,*Spectral sets and factorizations of finite abelian groups*, J. Funct. Anal.**145**(1997), 73-98. MR**98b:47011b****[Ped96]**Steen Pedersen,*Spectral sets whose spectrum is a lattice with a base*, J. Funct. Anal.**141**(1996), 496-509. MR**98b:47011a****[PW01]**Steen Pedersen and Yang Wang,*Universal spectra, universal tiling sets and the spectral set conjecture*, Math. Scand.**88**(2001), 246-256. MR**2002k:52030**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
42A99,
42C99,
51M04,
52C99

Retrieve articles in all journals with MSC (2000): 42A99, 42C99, 51M04, 52C99

Additional Information

**Steen Pedersen**

Affiliation:
Department of Mathematics, Wright State University, Dayton, Ohio 45435

Email:
steen@math.wright.edu

DOI:
https://doi.org/10.1090/S0002-9939-04-07403-9

Keywords:
Fourier basis,
non-harmonic Fourier series,
tiling,
spectral set,
spectral pair

Received by editor(s):
April 15, 2003

Published electronically:
February 6, 2004

Communicated by:
David R. Larson

Article copyright:
© Copyright 2004
American Mathematical Society