Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Euler number of the moduli space of sheaves on a rational nodal curve


Author: Baosen Wu
Translated by:
Journal: Proc. Amer. Math. Soc. 132 (2004), 1925-1936
MSC (2000): Primary 14D20, 14F05
DOI: https://doi.org/10.1090/S0002-9939-04-07415-5
Published electronically: January 26, 2004
MathSciNet review: 2053962
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we use finite group actions to compute the Euler number of the moduli space of rank 2 stable sheaves on a rational nodal curve.


References [Enhancements On Off] (What's this?)

  • 1. A. Beauville. Counting rational curves on K3 surfaces. Duke Math. J. 97 (1999), 99-108. MR 2000c:14073
  • 2. A. Grothendieck. Sur la classification des fibrés holomorphes sur la sphère de Riemann. Amer. J. Math. 79 (1957), 121-138. MR 19:315b
  • 3. R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977. MR 57:3116
  • 4. D. Huybrechts and M. Lehn. The geometry of moduli spaces of sheaves. Vieweg, Braunschweig, 1997. MR 98g:14012
  • 5. C. S. Seshadri. Fibrés vectoriels sur les courbes algébriques. Astérisque 96 (1982). MR 85b:14023
  • 6. C. T. Simpson. Moduli of representations of the fundamental group of a smooth projective variety I. Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47-129. MR 96e:14012

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14D20, 14F05

Retrieve articles in all journals with MSC (2000): 14D20, 14F05


Additional Information

Baosen Wu
Affiliation: Institute of Mathematics, Fudan University, Shanghai 200433, People’s Republic of China
Address at time of publication: Department of Mathematics, Stanford University, Stanford, CA 94305
Email: wbaosen@etang.com, bwu@math.stanford.edu

DOI: https://doi.org/10.1090/S0002-9939-04-07415-5
Keywords: Moduli space, Euler number, group action
Received by editor(s): November 1, 2001
Received by editor(s) in revised form: April 17, 2003
Published electronically: January 26, 2004
Communicated by: Michael Stillman
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society