Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Periodic solutions of nonlinear impulsive differential inclusions with constraints


Authors: Tiziana Cardinali and Raffaella Servadei
Journal: Proc. Amer. Math. Soc. 132 (2004), 2339-2349
MSC (2000): Primary 34A37, 34A60, 34B15
DOI: https://doi.org/10.1090/S0002-9939-04-07343-5
Published electronically: March 25, 2004
MathSciNet review: 2052411
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we obtain the existence of periodic solutions for nonlinear ``invariance'' problems monitored by impulsive differential inclusions subject to impulse effects.


References [Enhancements On Off] (What's this?)

  • 1. D. D. Bainov and P. S. Simeonov: Systems with impulsive effect. Stability, theory and applications, Ellis Horwood Series in Mathematics and its Applications, Ellis Horwood, Chichester, 1989. MR 90i:93082
  • 2. M. Benchohra, J. Henderson, and S. K. Ntouyas: On a periodic boundary value problem for first order impulsive differential inclusions, Dynam. Systems Appl. 10 (2001), 477-488. MR 2002i:34015
  • 3. S. G. Hristova and D. D. Bainov: Existence of periodic solutions of nonlinear systems of differential equations with impulse effect, J. Math. Anal. Appl. 125 (1987), 192-202. MR 88f:34055
  • 4. S. Hu and N. S. Papageorgiou: Handbook of multivalued analysis, Kluwer, Dordrecht, 1997. MR 98k:47001
  • 5. S. Hu and N. S. Papageorgiou: On the topological regularity of the solution set of differential inclusions with constraints, J. Differential Equations 107 (1994), 280-289. MR 94m:34036
  • 6. A. Lasota and J. A. Yorke: The generic property of existence of solutions of differential equations in Banach space, J. Differential Equations 13 (1973), 1-12. MR 49:770
  • 7. V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov: Theory of impulsive differential equations, World Scientific, Series in Modern Appl. Math., 6, Singapore, 1989. MR 91m:34013
  • 8. V. D. Mil'man and A. D. Myshkis: On the stability of motion in the presence of impulses, Sibirsk. Mat. Zh. 1 (2) (1960), 233-237. (Russian) MR 23:A3325
  • 9. M. Nagumo: Über die Lage der Integralkurven gewöhnlicker Differentialgleichungen, Proc. Phys.-Math. Soc. Japan, 24 (1942), 551-559. MR 7:381e
  • 10. N. S. Papageorgiou: Convergence theorems for Banach space valued integrable multifunctions, Internat. J. Math. Math. Sci. 10 (3) (1987), 433-442.MR 88i:28019
  • 11. A. M. Samoilenko and N. A. Perestyuk: Differential equations with impulse effect, World Scientific, Singapore (1995) (Visca Skola, Kiev (1987), in Russian).
  • 12. P. J. Watson: Impulsive differential inclusions, Nonlinear World 4 (1997), 395-402.MR 2000e:34018

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 34A37, 34A60, 34B15

Retrieve articles in all journals with MSC (2000): 34A37, 34A60, 34B15


Additional Information

Tiziana Cardinali
Affiliation: Department of Mathematics and Computer Science, University of Perugia, via Vanvitelli 1, Perugia 06123, Italy
Email: tiziana@dipmat.unipg.it

Raffaella Servadei
Affiliation: Department of Mathematics, University of Roma ‘Tor Vergata’, via della Ricerca Scientifica, Roma 00133, Italy
Email: servadei@mat.uniroma2.it

DOI: https://doi.org/10.1090/S0002-9939-04-07343-5
Keywords: Impulsive differential inclusions and equations, canonical domain, Bouligand contingent cone, lower and upper semicontinuity of set-valued maps
Received by editor(s): February 14, 2003
Received by editor(s) in revised form: April 29, 2003
Published electronically: March 25, 2004
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society