Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fixed point formula for holomorphic functions


Author: Nikolai Tarkhanov
Journal: Proc. Amer. Math. Soc. 132 (2004), 2411-2419
MSC (2000): Primary 32S50; Secondary 58J20
DOI: https://doi.org/10.1090/S0002-9939-04-07364-2
Published electronically: March 24, 2004
MathSciNet review: 2052419
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show a Lefschetz fixed point formula for holomorphic functions in a bounded domain $\mathcal{D}$ with smooth boundary in the complex plane. To introduce the Lefschetz number for a holomorphic map of $\mathcal{D}$, we make use of the Bergman kernel of this domain. The Lefschetz number is proved to be the sum of the usual contributions of fixed points of the map in $\mathcal{D}$ and contributions of boundary fixed points, these latter being different for attracting and repulsing fixed points.


References [Enhancements On Off] (What's this?)

  • 1. M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. 1, Ann. Math. 86 (1967), no. 2, 374-407. MR 35:3701
  • 2. A. V. Brenner and M. A. Shubin, The Atiyah-Bott-Lefschetz theorem for manifolds with boundary, Funkts. Analiz 15 (1981), no. 4, 67-68; English transl., Funct. Anal. Appl. 15 (1981), 286-287. MR 83a:58083
  • 3. H. Donnelly and C. Fefferman, Fixed point formula for the Bergman kernel, Amer. J. Math. 108 (1986), no. 5, 1241-1258. MR 87k:32043
  • 4. M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1957), 267-298. MR 19:740a
  • 5. B. Fedosov, On G-trace and G-index in deformation quantization, Lett. Math. Phys. 52 (2000), 29-49. MR 2001k:53175
  • 6. R. Harvey and J. Polking, The $\bar{\partial}\,$-Neumann kernel in the ball in $\mathbb{C}^{n}$, Proc. Sympos. Pure Math. 41 (1984), 117-136. MR 85j:32034
  • 7. H. Hopf, Über die algebraische Anzahl von Fixpunkten, Math. Z. 29 (1929), 493-524.
  • 8. L. Hörmander, The analysis of linear partial differential operators. III. Pseudodifferential operators, Springer-Verlag, Berlin, 1985. MR 87d:35002a
  • 9. S. Lefschetz, Intersections and transformations of complexes and manifolds, Trans. Amer. Math. Soc. 28 (1926), 1-49.
  • 10. I. Lieb and R. M. Range, Integral representations on Hermitian manifolds: the $\bar{\partial}\,$-Neumann solution of the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 11 (1984), 355-358. MR 85h:32004
  • 11. V. K. Patodi, Holomorphic Lefschetz fixed point formula, Bull. Amer. Math. Soc. 79 (1973), 825-828. MR 47:5906
  • 12. N. Tarkhanov, Complexes of differential operators, Kluwer Academic Publishers, Dordrecht, 1995. MR 96k:58205
  • 13. D. Toledo and Y. L. Tong, Duality and intersection theory in complex manifolds. 2: The holomorphic Lefschetz formula, Ann. of Math. 108 (1978), 519-538. MR 80j:32045
  • 14. A. K. Tsikh, Multidimensional residues and their applications, Amer. Math. Soc., Providence, RI, 1992. MR 93g:32005

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32S50, 58J20

Retrieve articles in all journals with MSC (2000): 32S50, 58J20


Additional Information

Nikolai Tarkhanov
Affiliation: Institute of Mathematics, University of Potsdam, P.O. Box 60 15 53, 14415 Potsdam, Germany
Email: tarkhanov@math.uni-potsdam.de

DOI: https://doi.org/10.1090/S0002-9939-04-07364-2
Keywords: Lefschetz number, Neumann problem, Bergman kernel
Received by editor(s): January 30, 2003
Received by editor(s) in revised form: May 15, 2003
Published electronically: March 24, 2004
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society