A LIMIT-POINT CRITERION
FOR A CLASS OF STURM-LIOUVILLE OPERATORS
DEFINED IN L^p SPACES

R. C. BROWN

(Communicated by Carmen C. Chicone)

Abstract. Using a recent result of Chernyavskaya and Shuster we show that the maximal operator determined by
$$M[y] = -y'' + qy$$
on (a, ∞), $a > -\infty$, where $q \geq 0$ and the mean value of q computed over all subintervals of \mathbb{R} of a
fixed length is bounded away from zero, shares several standard “limit-point at ∞” properties of the L^2 case. We also show that there is a unique solution of $M[y] = 0$ that is in all $L^p[a, \infty)$, $p = [1, \infty]$.

1. Introduction

In [3] Chernyavskaya and Shuster have determined necessary and sufficient conditions for the symmetric differential expression
$$M[y] = -y'' + qy$$
where $q \geq 0$ and q is locally Lebesgue integrable to be “correctly solvable” in $L^p(\mathbb{R})$. This concept means:
(i) for every $f \in L^p(\mathbb{R})$, $p \in [1, \infty]$, there is a unique solution $y_p \in L^p(\mathbb{R})$ of $M[y] = f$;
(ii) y_p satisfies the inequality
$$\|y_p\|_{p, \mathbb{R}} \leq c(p)\|M[y_p]\|_{p, \mathbb{R}}.$$

A main result of [3] is

Theorem A. M is correctly solvable in $L^p(\mathbb{R})$, $p \in [1, \infty]$, if and only if there exists $a \in (0, \infty)$ such that
$$q_0(a) := \inf_{x \in \mathbb{R}} \int_{x-a}^{x+a} q \, dt > 0.$$

Two corollaries to Theorem A are:
(i) M is correctly solvable in $L^p(\mathbb{R})$, $p \in [1, \infty]$, if $q \geq k > 0$ on \mathbb{R};
(ii) M is not correctly solvable in $L^p(\mathbb{R})$ for any $p \in [1, \infty]$ if $q \in L(-\infty, 0)$ or $q \in L(0, \infty)$.

Received by the editors December 18, 2002.
2000 Mathematics Subject Classification. Primary 47E05, 34C11, 34B24; Secondary 34C10.
Key words and phrases. Second-order differential operators of symmetric form in L^p spaces, correct solvability, limit-point, L^p solutions.
©2004 American Mathematical Society

2273
We assume throughout that M satisfies (1.2) and shall then show that the correct solvability of M implies two interesting conclusions holding for $p \in [1, \infty]$, one of which generalizes the fact that the restriction of M to the half-line $I = [a, \infty)$ is limit-point at ∞ in $L^2(I_a)$.

Before stating them however, we need some preliminaries. If X is a Banach space with norm $\|\cdot\|$, e.g. $L^p(\mathbb{R})$, $p \in [1, \infty]$, and $T : X \to X$ is an operator with dense domain $D \subset X$ we write $R(T)$ and $N(T)$ for the range and null space of T. If X^* is the dual of X, e.g. $L^p'(I_a)$, $p' = p/p - 1$, and $[x, x^*]$ signifies $x^*(x)$ for $x \in X$ and $x^* \in X^*$, we consider the set of pairs $G(T^*) := (z, z') \in X^* \times X^*$ such that

$$T(y), z = [y, z']$$

The density of D implies that $G(T^*)$ determines an operator T^* called the adjoint of T such that $T^*(z) = z'$. If $T : X^* \to X^*$ has a domain D^* that is total over X (i.e., $[x, x^*] = 0$ for all $x \in X$ and $x^* \in D^* \implies x = 0$), then the set of pairs $(z, z') \in X \times X$ satisfying (1.3) also determines an operator, which we also denote by T^*, and call the adjoint of T in X. In either case T^* is closed and

$$T(y), z = [y, T^*(z)]$$

for all $y \in D$, $z \in D^*$. Furthermore, if M is a subspace of X and M^* is a subspace of X^*, then

$$M^\perp := \{x^* \in X^* : [x, x^*] = 0, \ \forall x \in M\},$$

$$M^* = \{x \in X : [x, x^*] = 0, \ \forall x^* \in M^*\},$$

and if X is reflexive, i.e., the natural mapping of X to $(X^*)^* = X^{**}$ is an isomorphism, then $(M^*)^\perp = M^\perp$. If we set $G(T) := \{(y, T(y)) : y \in D\}$ and $G(-T) := \{(y, -T(y)) : y \in D\}$, then $G(T^*) = G(-T)^\perp \subset X^* \times X^*$.

It follows from these definitions and (1.3) (see, e.g., Kato, [7, Problem 5.27, p. 168], Rudin, [11, Theorem 4.7] and Goldberg, [5, Theorem IV.1.3]) that when T is closed,

$$R(T) = N(T^*)^\perp,$$

$$R(T)^\perp = M^* = N(T^*),$$

(1.5)

$$R(T^*) = N(T^*)^\perp,$$

$$R(T^*)^\perp = M^\perp = N(T).$$

We are interested in the operators determined by M but on the half-line $I_a = [a, \infty)$, $-\infty < a$, rather than on \mathbb{R}. This parallels a common situation in the Hilbert space theory of M and allows study of the L^p solutions of $M[y] = 0$ on I_a, which obviously cannot exist on \mathbb{R} if M is correctly solvable.

If $AC_{\text{loc}}(I_a)$ denotes the functions that are locally absolutely continuous on I_a, we set

$$\{y, z\}(t) := y'(t)\tilde{z}(t) - y(t)\tilde{z}'(t)$$

for $y, z \in AC_{\text{loc}}(I_a)$ and define the following operators and domains in $L^p(I_a)$.
Theorem 1. If is thoroughly treated in [8].

We call \(T \) solutions of found in one of [5, Chapter VI], [10], or [2]. (iv) is a consequence of the fact that \(a \) is the maximal" operator determined by \(\maximal \) operator determined by

Theorem 2. If extension \(\^ \) point" (yi)

Remarks. (i) Theorem 1 is an extension to all \(M \) of the fact that \(M \) is \(\preminimal \) and \(\minimal \) operators, and \(T \) the "maximal" operator determined by \(M \). These operators have the following properties.

Theorem B. For the cases \(p \in (1, \infty) \), \(p = 1 \), or \(p = \infty \) set \(p' := p/(p-1) \), \(p' = \infty \), or \(p' = 1 \). Then

(i) \(T_{0,p} \) and \(T \) are closed operators;
(ii) \(\left[T_{p} (y), z \right] = \lim_{t \to \infty} \{ y, z \} (t) - \{ y, z \} (a) + \{ y, T_{p'} \} ;
(iii) \(T_{p} = T_{0,p'} \) and \(T_{0,p} = T_{p'} ;
(iv) \(R(T_{0,p}) \) = \(N(T_{p'}) \) and \(\perp N(T_{p'}) = \overline{R(T_{0,p})} ;
(v) \(N(T_{0,p}) = \{ 0 \} \).

Moreover, for \(p \in (1, \infty) \), \(T_{0,p} \) is closable and \(\overline{T_{0,p}} = T_{0,p} \).

Proofs of (i)--(v), the last statement, as well as more general results may be found in one of [5] Chapter VI, [10], or [2]. (iv) is a consequence of the fact that solutions of \(M[y] = 0 \) under prescribed initial conditions are unique. The \(L^{2} \) theory is thoroughly treated in [8].

We are now in a position to state our two principal results.

Theorem 1. If \(q \in L^{\infty}_{\text{loc}} \) and satisfies (1.2) and \(p \in [1, \infty] \), then \(M \) is "p limit-point" (\(p \)LP) at \(\infty \) in the sense that

(i) \(\dim \left(\frac{D_{p}}{D_{0,p}} \right) = 2 \) and \(\dim \left(\frac{R(T_{p})}{R(T_{0,p})} \right) = 1 \);
(ii) \(\dim N(T_{p}) = 1 \);
(iii) for all \(y \in D_{p} \) and \(z \in D_{p} \) we have \(\lim_{t \to \infty} \{ y, z \} (t) = 0 \).

Theorem 2. If \(y_{1} \) denotes the principal or "small" solution of \(M[y] = 0 \), then \(y_{1} \in L^{p}(I_{a}) \) for all \(p \in [1, \infty] \).

Remarks. (i) Theorem 1 is an extension to all \(p \in [1, \infty] \) and to a more general \(q \) of the fact that \(M \) is \(LP \) at \(\infty \) when \(q \geq k > 0 \) and \(p = 2 \).

(ii) In the case when \(q \geq k > 0 \) a direct argument can be given to show that \(M[y] = 0 \) has exponentially growing and exponentially decaying solutions. Read [9] has extended this by showing that the same is true if

\[
\liminf_{x \to \infty} \int_{x}^{x+a} q^{1/2} dt > aL
\]

for positive constants \(a \) and \(L \). Clearly (1.6) implies (1.2) of Theorem A for the extension \(\hat{q}_{1} \) of \(q \) obtained by setting \(\hat{q}_{1}(t) = 1 \) for \(t < a \). In this case or if \(q \)

1By extending the procedure of Naimark [8 §17], used to define maximal and minimal operators in the \(L^{2} \) case, it is almost certain that \(q \) need only be locally integrable. However, in this case, \(D_{0,p} \) need not contain any member of \(C_{0}^{\infty}(I_{a}) \) and has to be redefined as the subspace of \(D \) having compact support on \(I_{a} \). The density of \(D_{0,p} \) must then be shown by an independent argument. Because of its technical complications we will not pursue this approach here.
is bounded away from zero, Theorem 2 is trivially true since \(y_1 \) is exponentially decreasing. Under the condition (\[2\]), however, Theorem 2 seems to be new.

(iii) In the \(L^p \) theory \(M \) is said to be strong limit-point (SLP) or Dirichlet (D) at \(\infty \) if \(\lim_{t \to \infty} y(t) = 0 \) for all \(y, z \in D_2 \), or if \(y' \) and \(q^{1/2}y \in L^2(I_a) \) for all \(y \in D_2 \).

It is known \([1]\) that \(D \Rightarrow \text{SLP} \) and that both SLP and D hold if \(q \geq k > 0 \). It would be interesting to see if either SLP or D might be profitably extended to the \(L^p \) setting.

Lemma 1. For \(p \in [1, \infty] \), \(R(T_p) = L^p(I_a) \) and \(T_{0,p} \) has closed range.

Proof. Since \(q \) is defined only on \(I_a \), to apply Theorem A we consider the extension \(\tilde{q}_1 \). Similarly if \(f \in L^p(I_a) \), we construct an extension \(\tilde{f} \) to \(\mathbb{R} \) by setting \(\tilde{f}(t) = 0 \) for \(t < a \). By Theorem A there is a unique \(\tilde{y} \in L^p(\mathbb{R}) \) such that \(M[\tilde{y}] = \tilde{f} \). The restriction \(y \) of \(\tilde{y} \) to \(I_a \) is evidently in \(D_p \) and satisfies \(M[y] = f \), showing that \(T_p \) is onto \(L^p(I_a) \). If \(R(T_{0,p}) \) is not closed, by the Closed Range Theorem the inverse of \(T_{0,p} \) is unbounded. Therefore there are sequences \(\{y_n\} \subset D_{0,p}, \{f_n\} \subset R(T_{0,p}) \) such that \(f_n \to 0 \), \(\|y_n\| = 1 \), and \(M[y_n] = f_n \). Let \(\tilde{y}_n \) and \(\tilde{f}_n \) be the extensions of \(y_n \) and \(f_n \) to \(\mathbb{R} \) defined as above. Applying Theorem A again there is a unique \(\tilde{z}_n \) for each \(\tilde{f}_n \) such that \(M[\tilde{z}_n] = \tilde{f}_n \) and

\[
\|\tilde{z}_n\|_{p,\mathbb{R}} \leq c_p \|\tilde{f}_n\|_{p,\mathbb{R}} \leq c_p \|f_n\|_{p,\mathbb{R}}.
\]

Therefore if \(z_n \) is the restriction of \(\tilde{z}_n \) to \(I_a \) we have also that \(\|z_n\|_{p,\mathbb{I}_a} \leq c_p \|f_n\|_{p,\mathbb{I}_a} \). Hence since \(f_n \to 0 \), so does \(z_n \). Because \(M[z_n] = f_n = M[y_n] \) we have that \(z_n = y_n \in N(T_p) \).

Moreover, \(1/2 \leq \|z_n - y_n\|_{p,\mathbb{I}_a} \leq 3/2 \) for sufficiently large \(n \) because \(\|y_n\|_{p,\mathbb{I}_a} = 1 \) and \(z_n \to 0 \). If \(N(T_p) = \{0\} \), then \(z_n \to 0 \), which is impossible. If \(N(T_p) = \text{span}\{u\} \) where \(\|u\| = 1 \), then \(z_n - y_n = k_nu \). Since the \(k_n \) lie in the bounded interval \([1/2, 3/2] \) for sufficiently large \(n \), there must be a subsequence \(k_{n_i} \to k \neq 0 \). It follows that \(y_{n_i} \to -ku \). Because \(T_{0,p} \) is closed, \(u \in D_{0,p} \). But since the null space of \(T_{0,p} \) is trivial, \(u = 0 \), contradicting our assumption. The case \(N(T_p) = \text{span}\{u_1, u_2\} \) is handled by a similar argument. \(\square \)

The following three results are standard, but since some are difficult to find in the literature in the form stated we include proofs.

Lemma 2. If \(X \) is a Banach space, \(X^* \) is its dual, and \(M \) is a finite-dimensional subspace of \(X \), then

\[
\dim \left(\frac{X^*}{M^\perp} \right) = \dim M.
\]

Proof. Let \(\{m_i\}, i = 1, \ldots, n \) be a basis for \(M \). By the Hahn-Banach theorem we can find \(f_i \in X^* \) such that \(f_i(m_i) = \delta_{ij}, 1 \leq i, j \leq n \). We claim that \(\{f_i\}, i = 1, \ldots, n \), is a linearly independent set mod \(M^\perp \). For if \(c_1f_1 + \cdots + c_nf_n \in M^\perp \), where not all the \(c_i \) are zero we have that for any particular (and therefore all) \(c_j \) that

\[
c_j = c_j f_j(m_j) = \left(\sum_{i=1}^{n} c_if_i \right)(m_j) = 0,
\]
which is a contradiction. It follows that
\[\dim M \leq \dim \left(\frac{X^*}{M^\perp} \right). \]

If the inequality is strict we can find \(f \in X^* \) such that \(S = \{f_1, \ldots, f_n, f\} \) is linearly independent mod \(M^\perp \). Consider
\[\psi := f - \sum_{i=1}^m f(m_i) \varphi_i. \]

Since \(f \notin M^\perp \), not all the \(f(m_i) = 0 \). However, \(\psi(m_i) = 0 \) for \(i = 1, \ldots, n \), showing that \(\psi \in M^\perp \) so that \(S \) is linearly dependent mod \(M^\perp \) and thus contradicting our assumption. \(\square \)

Lemma 3. Suppose that \(X \) and its dual \(X^* \) are Banach spaces, and let \(T_2 \subseteq T_1 \) be densely defined operators \(X \rightarrow X \) with domains \(D_1 \) and \(D_2 \), and let \(T_1^* \subseteq T_2^* \) be their adjoints with domains \(D_1^* \) and \(D_2^* \). If \(\dim(D_1/D_2) = n < \infty \), then
\[\dim \left(\frac{D_1}{D_2} \right) = \dim \left(\frac{D_2}{D_1} \right). \]

Proof. The technique is similar to that of Lemma 2. First note that
\[\dim \left(\frac{D_1}{D_2} \right) = \dim \left(\frac{G(-T_1)}{G(-T_2)} \right) \quad \text{and} \quad \dim \left(\frac{D_2}{D_1} \right) = \dim \left(\frac{G(T_2^*)}{G(T_1^*)} \right). \]

Let \(\nu_i = (\alpha_i, -T_1(\alpha_i)), i = 1, \ldots, n \), be a linearly independent set mod \(G(-T_2) \). By the Hahn-Banach Theorem we can find
\[\psi_j = (u_j, v_j) \in (G(-T_2))^\perp \equiv G(T_2^*) \subset X^* \times X^*, \quad j = 1, \ldots, n, \]

such that \(\psi_j(\nu_i) = u_j(\alpha_i) + v_j(-T_1(\alpha_i)) = \delta_{ij} \). Now \(\{\psi_j\}, j = 1, \ldots, n \), is a linearly independent set mod \(G(T_1^*) \), for if
\[\eta = \sum_{j=1}^n c_j \psi_j \in G(T_1^*), \]
then \(\eta(\nu_i) = 0 = c_i \) for \(i = 1, \ldots, n \). This shows that \(\dim(D_1/D_2) \leq \dim(D_2/D_1) \). But if \(\{\psi_1, \ldots, \psi_n, \psi\} \), \(\psi \in G(T_2^*) \), is linearly independent mod \(G(T_1^*) \), this contradicts the fact that \(\psi - \sum_{i=1}^n d_i \psi_i \in G(T_1^*) \) where \(d_i = \psi(\nu_i) \). \(\square \)

Lemma 4. Suppose that \(X \) is a Banach space and \(X^* \) is its dual, and let \(T_1 : X^* \rightarrow X \) be an operator with domain \(D_1 \) and \(T_2 \) be a one-to-one restriction of \(T_1 \) with closed range having domain \(D_2 \subset D_1 \). If \(\dim(N(T_1)) < \infty \) and \(\dim^\perp R(T_2) \subseteq X < \infty \), then
\[\dim \left(\frac{D_1}{D_2} \right) = \dim N(T_1) + \dim^\perp R(T_2). \]

Proof. In Lemma 2 we identify \(M \) with \(\perp R(T_2) \). Since \(R(T_2) \) is closed, \(M^\perp = R(T_2) \). We can conclude that
\[\dim \left(\frac{R(T_1)}{R(T_2)} \right) = \dim^\perp R(T_2). \]

If \(k = \dim^\perp R(T_2) \), we can find nonzero elements \(f_1, \ldots, f_k \) in \(R(T_1) \) that are linearly independent mod \(R(T_2) \). Suppose \(y_i \in D_1 \) and \(M[y_i] = f_i, i = 1, \ldots, k. \)
Then it is easily verified that $S_1 = \{y_1, \ldots, y_k\}$ is a linearly independent set mod D_2 (for otherwise a linear combination of the f_i would be in $R(T_2)$). Let $S_2 = \{z_1, \ldots, z_m\}$ be a basis of $N(T_1)$. We claim that $S_1 \cup S_2$ is linearly independent mod D_2. For assume that $\eta = \eta_1 + \eta_2 \in D_2$ where

$$\eta_1 = \sum_{i=1}^{k} c_i y_i, \quad \eta_2 = \sum_{i=1}^{m} d_i z_i$$

and not all the coefficients vanish. In particular, under this assumption, since $N(T_1) \cap D_2 = \{0\}$, not all the $c_i = 0$ vanish, for otherwise $\eta_2 \neq 0$ and $\eta_2 \in D_2 \cap N(T_1)$. But then

$$T_1(\eta) = T_1(\eta_1) = \sum_{i=1}^{k} c_i f_i \in R(T_2),$$

contradicting the linear independence of the f_i mod $R(T_2)$. It follows that

$$\dim \left(\frac{D_2}{D_2} \right) \geq \dim N(T_1) + \dim \frac{1}{2} R(T_2) = m + k.$$

Suppose that we can adjoin an element $u \in D_1$ to $S_1 \cup S_2$ so that $S_3 = (S_1 \cup S_2) \cup \{u\}$ is linearly independent mod D_2. Since $N(T_1)$ is finite dimensional, it is complemented in X, and so u can be written uniquely as a sum $u_1 + u_2$ where $u_1 \in N(T_1)$ and $u_2 \in (D_1 \setminus N(T_1)) \cup \{0\}$. If η_3 is an arbitrary linear combination of elements of S_3 with a nonzero coefficient d of u, then

$$T_1(\eta_3) = \sum_{i=1}^{k} c_i f_i + d T_1(u_2) \notin R(T_2),$$

implying that $\dim(R(T_1)/R(T_2)) = k + 1$, which is false. \square

Lemma 5. For $p \in [1, \infty]$,

$$\dim N(T_p) = \dim \left(\frac{R(T_p)}{R(T_{0,p})} \right) = 1,$$

$$\dim \left(\frac{D_p}{D_{0,p}} \right) = 2.$$

Proof. Since M is disconjugate on I_a and since $q > 0$, it follows by Corollary 6.4 and Theorem 6.4 of Hartman [6] that there is a fundamental set of positive linearly independent solutions y_1 and y_2 of $M[y] = 0$, called respectively the principal and nonprincipal solutions, such that $y'_1 \leq 0$ and $y'_2 > 0$ on I_a. Additionally, $\lim_{t \to \infty} y_1 / y_2 = 0$. Suppose $y_p \in N(T_p)$ for $p \in [1, \infty]$. We claim that y_p must be a multiple of y_1. For if $y_p = c_1 y_1 + c_2 y_2$ with $c_2 \neq 0$, then

$$\lim_{t \to \infty} y_p(t) = \lim_{t \to \infty} \left| y_2(c_1 y_1 / y_2 + c_2) \right| = |c_2| y_2.$$

(2.1)

Since $|y_p(t)|$ becomes arbitrarily close to a nondecreasing positive function, it cannot be in $L^p(I_a)$. This shows that $\dim N(T_p) \leq 1$, for $p \in [1, \infty]$, and if nontrivial, $N(T_p)$ is spanned by $\{y_1\}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
We next show that \(N(T_p) \neq \{ 0 \} \). If \(r \in (1, \infty) \), then \(R(T_{0,r}) \) is closed by Lemma \(\mathbf{4} \) and from Theorem B (iv) and the fact that \(L^r(I_a) = L^r(I_b) \),
\begin{align}
(2.2) \quad & R(T_{0,r}) = \overline{\dim N(T_r)} = N(T_r), \\
(2.3) \quad & \overline{\dim R(T_{0,r})} = N(T_r).
\end{align}
Also, by Lemma \(\mathbf{1} \) (again), \(R(T_r) = L^r(I_a) \). We now identify \(M \) with \(N(T_r) \), \(X \) with \(L^r(I_a) \), and \(X^* \) with \(L^r(I_b) \). (2.2) and Lemma \(\mathbf{2} \) then give that
\begin{equation}
(2.4) \quad \dim \left(\frac{R(T_r)}{R(T_{0,r})} \right) = \dim N(T_r) \leq 1.
\end{equation}
Hence if \(\dim(R(T_r)/R(T_{0,r})) = 0 \), then \(N(T_r) = \{ 0 \} \), and by (2.3) and Lemma \(\mathbf{4} \), \(\dim(D_r/D_{0,r}) = \dim N(T_r) \). However, since we can find \(C_0^\infty \) linearly independent functions \(\phi_1, \phi_2 \) with support in \(I_a \) such that \(\phi_1(a) = 1 = \phi_2(b) \) and \(\phi_1'(a) = 0 = \phi_2'(b) \) it must be the case that \(\dim(D_r/D_{0,r}) \geq 2 \). So \(\dim N(T_r) = 2 \), which as we have seen from (2.1) is not possible given the properties of \(y_1 \) and \(y_2 \). This contradiction shows that \(\dim N(T_r) = 1 \) for \(r \in [1, \infty) \). If \(p = r \in (1, \infty) \) by (2.4), then \(\dim(R(T_p)/R(T_{0,p})) = 1 \) and if we choose \(r' = p \), then \(\dim N(T_p) = 1 \) for \(p \in [1, \infty) \). If \(p = \infty \), then \(y_1 \in N(T_\infty) \) since \(y_1 > 0 \) and \(y' \leq 0 \), and so \(\dim N(T_\infty) = 1 \). Since we have now established that \(\dim N(T_p) = \dim N(T_\infty) \) for \(p \in (1, \infty) \) by Lemma \(\mathbf{4} \) and (2.3), \(\dim(D_p/D_{0,p}) = 2 \). By Lemma \(\mathbf{3} \) \(\dim(D_1/D_{0,1}) = 2 \). Since \(T_1 \) is one-to-one on \(D_1 \cap N(T_1) \) we conclude that \(\dim(R(T_1)/R(T_{0,1})) = 1 \). The lemma is now established in all cases.

\textbf{Proof of Theorem 2} (i) and (ii) is the assertion of Lemma \(\mathbf{5} \). It follows that \(D_p = D_{0,p} \oplus \text{span} \{ \phi_1, \phi_2 \} \). Since \(\phi_1, \phi_2 \) vanish at \(\infty \), \(\lim_{t \to \infty} \{ y, z \}(t) = 0 \), which proves (iii).

\textbf{Proof of Theorem 2} This is also obvious from (2.1) and the proof of Lemma \(\mathbf{5} \). \(\square \)

\section*{References}

Department of Mathematics, University of Alabama, Tuscaloosa, Alabama 35487-0350

E-mail address: dbrown@gp.as.ua.edu