Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

New obstructions to the thickening of $CW$-complexes


Author: Octavian Cornea
Journal: Proc. Amer. Math. Soc. 132 (2004), 2769-2781
MSC (2000): Primary 57R12, 55Q25; Secondary 37D15
DOI: https://doi.org/10.1090/S0002-9939-04-07345-9
Published electronically: March 25, 2004
MathSciNet review: 2054804
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we use Morse theory to produce new obstructions to the existence of thickenings of $CW$-complexes in low codimension. The obstructions are expressed as nonexistence of solutions $x$ to an equation of type $\Sigma^{k}L=\Sigma^{s}x$ with $L$ a Ganea-Hopf type invariant.


References [Enhancements On Off] (What's this?)

  • 1. F. X. Connolly and B. Williams, Embeddings up to homotopy type and geometric suspensions of manifolds, Quart. J. Math. Oxford Ser. (2) 29 (1978), 385-401. MR 83a:57022
  • 2. G. Cooke, Embedding certain complexes up to homotopy type in Euclidean space, Ann. of Math. 90 (1969), 144-156. MR 39:3486
  • 3. O. Cornea, Homotopical Dynamics II: Hopf invariants, smoothings and the Morse complex, Annales Scient. École Norm. Sup. (4) 35 (2002), 549-573.
  • 4. O. Cornea, Homotopical Dynamics IV: Hopf invariants and Hamiltonian flows, Commun. Pure and Appl. Math. LV (2002), 1033-1088. MR 2003e:37081
  • 5. J. Franks, Morse-Smale flows and homotopy theory, Topology 18 (1979), 199-215. MR 80k:58063
  • 6. T. Ganea, A generalization of the homology and homotopy suspension, Comment. Math. Helv. 39 (1965), 295-322. MR 31:4033
  • 7. P. Lambrechts, D. Stanley, and L. Vandembroucq, Embeddings up to homotopy of two-cones in Euclidean space, Trans. Amer. Math. Soc. 354 (2002), 3973-4013. MR 2003h:55012
  • 8. J. Milnor, Lectures on the h-cobordism theorem, Princeton Math. Notes, Princeton University Press, Princeton, NJ, 1965. MR 32:8352
  • 9. F. P. Peterson and N. Stein, The dual of a secondary cohomology operation, Illinois J. of Math. 4 (1960), 397-404. MR 27:1948
  • 10. N. Steenrod and D. Epstein, Cohomology operations, Annals of Math. Studies 50, Princeton University Press, Princeton, NJ, 1962. MR 26:3056
  • 11. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies 49, Princeton University Press, Princeton, NJ, 1962. MR 26:777
  • 12. C. T. C. Wall, Classification problems in differential topology IV, Topology 5 (1966), 73-94. MR 33:734

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57R12, 55Q25, 37D15

Retrieve articles in all journals with MSC (2000): 57R12, 55Q25, 37D15


Additional Information

Octavian Cornea
Affiliation: Département de Mathématiques et de Statistique, Université de Montréal, CP 6128, Succursale Centre-ville, Montréal, Quebec H3C 3J7, Canada
Email: cornea@dms.umontreal.ca

DOI: https://doi.org/10.1090/S0002-9939-04-07345-9
Received by editor(s): December 17, 2002
Received by editor(s) in revised form: May 17, 2003
Published electronically: March 25, 2004
Communicated by: Paul Goerss
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society