INDECOMPOSABLES OF MULTIPlicative Fibrations

JAMES P. LIN

(Communicated by Paul Goerss)

Abstract. Given a multiplicative fibration \(F \rightarrow E \rightarrow B \) we study the module of indecomposables \(\mathbb{Q}H^n(E; \mathbb{Z}_p) \) for \(p \) a prime.

A fibration \(F \rightarrow E \rightarrow B \) is a multiplicative fibration if \(E \) and \(B \) are connected \(H \)-spaces and \(\pi : E \rightarrow B \) is an \(H \)-map. In this note we study the module of indecomposables \(\mathbb{Q}H^n(E; \mathbb{Z}_p) \) for \(p \) a prime.

Theorem 0.1 (Main Theorem). Let \(F \rightarrow E \rightarrow B \) be a multiplicative fibration.

(a) Let \(p \) be an odd prime. If \(n \equiv 0 \mod 2p \) and \(n \equiv \pm 1 \mod 2p \), then there are exact sequences

\[
\begin{align*}
PH_n(F; \mathbb{Z}_p) & \xrightarrow{P^*} PH_n(E; \mathbb{Z}_p) \xrightarrow{\pi^*} PH_n(B; \mathbb{Z}_p), \\
\mathbb{Q}H^n(F; \mathbb{Z}_p) & \xrightarrow{Q^*} \mathbb{Q}H^n(E; \mathbb{Z}_p) \xrightarrow{\pi^*} \mathbb{Q}H^n(B; \mathbb{Z}_p).
\end{align*}
\]

(b) Let \(n \equiv 0 \mod 2p \) for \(p \) odd or \(n \) even for \(p = 2 \). Suppose

\[\mathbb{Q}H^n(F; \mathbb{Z}_p) \oplus \sum_{k=1}^{\infty} \mathbb{Q}^n(\xi^k H^*(F; \mathbb{Z}_p)) = 0\]

where \(\xi : H^*(F; \mathbb{Z}_p) \rightarrow H^*(F; \mathbb{Z}_p) \) is the \(p \)th power map. Then \(\mathbb{Q}H^n(E; \mathbb{Z}_p) = \mathbb{Q}^n \pi^* \mathbb{Q}H^n(B; \mathbb{Z}_p) \).

Theorems similar to the Main Theorem have been proved under more specialized assumptions. For example, if \(H^*(E; \mathbb{Z}_p) \) is a \(U(M) \) module, such multiplicative fibrations were studied by Massey and Peterson [6, 7]. In the case of loop fibrations, these sequences have been considered by Goerss, Lannes and Morel [2]. Moore and Smith also study multiplicative fibrations using the Eilenberg-Moore spectral sequence [10]. We will use this theorem in a future paper to investigate the cohomology of finite \(H \)-spaces with nontrivial Steenrod action on the even degree indecomposables. As a corollary of the Main Theorem, we make some observations about the ring structure of \(H_*(E; \mathbb{Z}_p) \).

We assume all spaces have the homotopy type of path connected CW complexes with basepoint and all homology and cohomology modules are finitely generated.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The ground field will be the field \(\mathbb{Z}_p \) of \(p \) elements where \(p \) is a prime. Given a connected Hopf algebra \(A, I(A) \) will denote the elements of \(A \) of positive degree. \(P(A) \) and \(Q(A) \) will denote the primitives and indecomposables respectively. \(\alpha_A : I(A) \longrightarrow Q(A) = I(A)/I(A)^2 \) will denote the projection map.

The author would like to thank John McCleary for several useful comments. Some of the work for this paper was done while visiting Yutaka and Keiko Hemmi at Kochi University in Kochi, Japan. The author wishes to thank them for their wonderful hospitality during his stay. The author also thanks the referee for several useful comments.

Proposition 0.2. Let \(A \) and \(B \) be connected commutative Hopf algebras over \(\mathbb{Z}_p \) with \(B \) a sub-Hopf algebra of \(A \).

(a) Let \(n \neq 0 \mod 2p \), for \(p \) odd or \(n \) odd for \(p = 2 \). Then the inclusion map \(i : B \longrightarrow A \) induces a monomorphism \(\varphi : Q^n B \longrightarrow Q^n A \).

(b) Let \(n \equiv 0 \mod 2p \) for \(p \) odd or \(n \) even for \(p = 2 \). Suppose \(0 \neq \alpha_B(b) \in Q^n B \cap \ker \varphi \). Then \(\alpha_B(b) \) can be represented by a \(p^k \)th power of an algebra generator \(a \in A \) for some \(k \geq 1 \).

Proof. Suppose \(0 \neq \alpha_B(b) \in Q^n B \cap \ker \varphi \). Let \(B(n - 1) \) be the sub-Hopf algebra of \(B \) generated by elements of \(B \) of degree less than \(n \). We have a commutative diagram:

\[
\begin{array}{cccccc}
B & \xrightarrow{\pi_B} & B/B(n-1) & \xrightarrow{i} & A & \xrightarrow{\pi_A} & \text{A}/B(n-1) \\
\downarrow & & \downarrow & & \downarrow & & \\
\text{Q}^n B & \xrightarrow{Q\varphi} & \text{Q}^n A & \xrightarrow{Q\pi_A} & \text{Q}^n (\text{A}/B(n-1)) \\
\end{array}
\]

where \(\pi_B, \pi_A \) are Hopf algebra epimorphisms and \(0 \neq \pi_B(b) \in P^n(B/B(n-1)) \cong Q^n B \). By [3, p. 8] there exist isomorphisms \(B \cong B(n-1) \otimes B/B(n-1) \) and \(A \cong B(n-1) \otimes \text{A}/B(n-1) \) such that the following diagram commutes:

\[
\begin{array}{cccccc}
B & \xrightarrow{i} & B(n-1) \otimes B/B(n-1) & \xrightarrow{1 \otimes \theta} & \text{A}/B(n-1) \\
\downarrow & & \downarrow & & \\
B(n-1) \otimes \text{A}/B(n-1) \\
\end{array}
\]

Therefore, \(\theta \) is a monomorphism.

We have a commutative diagram:

\[
\begin{array}{ccccc}
\text{Q}^n B & \xrightarrow{Q\varphi} & \text{Q}^n A & \xrightarrow{Q\pi_A} & \text{Q}^n (\text{A}/B(n-1)) \\
\downarrow & & \downarrow & & \downarrow \\
0 & \xrightarrow{P^n(B/B(n-1))} & P^n(\text{A}/B(n-1)) & \xrightarrow{P\theta} & P^n(\text{A}/B(n-1)) \\
\downarrow & & \downarrow & & \\
0 & & \downarrow & & \\
\end{array}
\]

(0.1)

The bottom row is exact since \(\theta \) is monic. The right column is exact by [9, Proposition 4.2.21]. Now given \(Q\varphi \alpha_B(b) = 0 \), by diagram (0.1), it follows that
Let $F \xrightarrow{j} E \xrightarrow{\pi} B$ be a multiplicative fibration. By [1, Lemma 5.1], $\pi_1(B)$ acts trivially on $H_*(F; \mathbb{Z}_p)$. Hence, the Serre spectral sequence for the fibration satisfies

$$E_2^{r,s} = H^r(B; \mathbb{Z}_p) \otimes H^s(F; \mathbb{Z}_p)$$

and

$$E_\infty \cong G_*H^*(E; \mathbb{Z}_p).$$

This is a first quadrant spectral sequence of Hopf algebras [1, p. 166]. Furthermore, by [1, Theorem 5.8],

$$E_k \cong B_k \otimes C_k \otimes M_k \otimes N_k \quad \text{for} \quad k \geq 2$$

as algebras

where

$$B_k = E^{0,*}_k \quad \text{and} \quad C_k = E^{*,0}_k$$

are sub-Hopf algebras of E_k. $M_k = \Lambda(x_1, \ldots, x_\ell)$ and $N_k = \Lambda(w_1, \ldots, w_n)$ with $\dim x_i \equiv 1 \mod 2p$ and $\dim w_i \equiv -1 \mod 2p$. Equation (0.3) implies

$$Q^rE^{s,*}_\infty = 0 \quad \text{for} \quad r > 0 \quad \text{and} \quad s > 0 \quad \text{and} \quad r + s \not\equiv \pm 1 \mod 2p.$$

Hence, if $n \not\equiv \pm 1 \mod 2p$,

$$Q^rE^{s,*}_\infty = QE^{0,n}_\infty \oplus QE^{n,0}_\infty.$$

By [8, Theorem 5.8], $j^*: H^*(E; \mathbb{Z}_p) \longrightarrow H^*(F; \mathbb{Z}_p)$ is the composition

$$H^*(E; \mathbb{Z}_p) \longrightarrow E^{0,n}_\infty \subseteq E^{2,n}_\infty \subseteq \cdots \subseteq E^{2,n}_\infty = H^*(F; \mathbb{Z}_p),$$

and \(\pi^*: H^*(B; \mathbb{Z}_p) \longrightarrow H^*(E; \mathbb{Z}_p)\) is the composition

$$H^*(B; \mathbb{Z}_p) = E^{2,0}_\infty \longrightarrow E^{2,0}_{n+1} = E^{2,0}_\infty \subseteq H^*(E; \mathbb{Z}_p).$$

Proof of the Main Theorem [7,1] The sequences of (a) are dual. So it suffices to prove

$$QH^*(B; \mathbb{Z}_p) \xrightarrow{Q\pi^*} QH^*(E; \mathbb{Z}_p) \xrightarrow{Qj^*} QH^*(F; \mathbb{Z}_p)$$

is exact if p is an odd prime, $n \not\equiv 0 \mod 2p$ and $n \not\equiv \pm 1 \mod 2p$. Note that πj is null homotopic. Therefore, $Qj^*Q\pi^* = 0$. So it suffices to prove $\ker Qj^* \subseteq \im Q\pi^*$.

Let $\alpha: H^*(E; \mathbb{Z}_p) \longrightarrow QH^*(E; \mathbb{Z}_p)$ be the projection. Let $\alpha(w) \in \ker Qj^* \cap QH^*(E; \mathbb{Z}_p)$. The Serre spectral sequence is a spectral sequence of algebras. Hence, w must produce a nonzero element of $Q^rE^*_\infty$. By (0.4),

$$Q^rE^*_\infty = QE^{0,n}_\infty \oplus QE^{n,0}_\infty.$$

Suppose $\alpha(w)$ has a nonzero component in $QE^{0,n}_\infty$. By (0.3) and (1.10), $E^{0,n}_\infty$ is a sub-Hopf algebra of $H^*(F; \mathbb{Z}_p)$. By Proposition (0.2), since $n \not\equiv 0 \mod 2p$, and p is odd, a nonzero element of $QE^{0,n}_\infty$ produces a nonzero element of $QH^*(F; \mathbb{Z}_p)$.

By (0.7), this would imply that \(Qj^*(\alpha(w)) \neq 0 \). But \(\alpha(w) \in \ker Qj^* \). Therefore, \(\alpha(w) \) has zero component in \(QE^{0,n}_\infty \) and \(\alpha(w) \) lies in \(QE^{n,0}_\infty \). By (0.7),

\[(0.8) \quad H^n(B; \mathbb{Z}_p) \to E^{n,0}_\infty \text{ is onto.}\]

Hence \(\alpha(w) \) lies in the image of \(Q\pi^* \). This proves (a). To prove (b) let \(\alpha(w) \in QH^n(E; \mathbb{Z}_p) \) with \(n \equiv 0 \mod 2p \) for \(p \) odd or \(n \) even for \(p = 2 \). Suppose \(\alpha(w) \) has nonzero component \(x \) in \(QE^{0,n}_\infty \). Since \(QH^n(F; \mathbb{Z}_p) = 0 \), the inclusion map induces the trivial map

\[Q_i : QE^{0,n}_\infty \to QH^n(F; \mathbb{Z}_p).\]

By Proposition (0.2) (b), \(x \) can be represented by a \(p^k \)-th power of an algebra generator of \(H^*(F; \mathbb{Z}_p) \). But \(Q^n(\xi^k H^*(F; \mathbb{Z}_p)) = 0 \). Hence \(\alpha(w) \) has no component in \(QE^{0,n}_\infty \) and \(\alpha(w) \) lies in \(QE^{n,0}_\infty \). By (0.8), \(\alpha(w) \) lies in the image of \(Q\pi^* \). \(\square \)

Let \(f : B \to K(\mathbb{Z}_p, \ell + 1) \) be an \(H \)-map, and let \(E \) be the fibre of \(f \). We have the following multiplicative fibration:

\[
\begin{array}{c}
K(\mathbb{Z}_p, \ell) \\
\downarrow j \\
E \\
\downarrow \pi \\
B
\end{array}
\]

In general, the algebra structure of \(H_*(E; \mathbb{Z}_p) \) is difficult to compute. We can, however, make the following observations.

Corollary 0.3. Let \(p \) be an odd prime. Let \(s, t \in PH_*(E; \mathbb{Z}_p) \) with \(\pi_*(s) \neq 0, \pi_*(t) \neq 0 \), and \([\pi_*(s), \pi_*(t)] = 0 \). Suppose \(\deg[s, t] = n \) and \(n \not\equiv \pm 1 \mod 2p \) and \(n \not\equiv 0 \mod 2p \). If \(QH^n(K(\mathbb{Z}_p, \ell); \mathbb{Z}_p) = 0 \), then \([s, t] = 0 \).

Proof. By the Main Theorem (0.1) (a), since \(PH_*(K(\mathbb{Z}_p, \ell); \mathbb{Z}_p) = 0 \), if \([s, t] \neq 0 \), then \(\pi_*[s, t] = [\pi_*(s), \pi_*(t)] \neq 0 \). We conclude \([s, t] = 0 \). \(\square \)

Corollary 0.4. Let \(t \in PH_{2m}(E; \mathbb{Z}_p) \) with \(\pi_*(t) \neq 0 \), and \((\pi_*(t))^p = 0 \). If \(QH^{2mp}(K(\mathbb{Z}_p, \ell); \mathbb{Z}_p) \oplus \sum_{k=1}^{\infty} Q^{2mp}(\xi^k H^*(K(\mathbb{Z}_p, \ell); \mathbb{Z}_p)) = 0 \), then \(t^p = 0 \).

Proof. If \(t^p \neq 0 \), there exists an indecomposable \(\gamma \in QH^{2mp}(E; \mathbb{Z}_p) \) with \(\langle t^p, \gamma \rangle = 1 \). By the Main Theorem (0.1) (b), \(\gamma = \pi^*(\gamma_1) + d \) where \(\gamma_1 \) is indecomposable and \(d \) is decomposable. Then \(1 = \langle t^p, \gamma \rangle = \langle t^p, \pi^*(\gamma_1) + d \rangle = \langle t^p, \pi^*(\gamma_1) \rangle = \langle (\pi_*(t))^p, \gamma_1 \rangle = 0 \). This is a contradiction. Therefore, \(t^p = 0 \). \(\square \)

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DIEGO, LA JOLLA, CALIFORNIA 92093-0112

E-mail address: jimlin@euclid.ucsd.edu