Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Essential domains and two conjectures in dimension theory


Authors: M. Fontana and S. Kabbaj
Journal: Proc. Amer. Math. Soc. 132 (2004), 2529-2535
MSC (2000): Primary 13C15, 13F20, 13F05, 13G05, 13B02, 13B30
DOI: https://doi.org/10.1090/S0002-9939-04-07502-1
Published electronically: April 21, 2004
MathSciNet review: 2054776
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This note investigates two long-standing conjectures on the Krull dimension of integer-valued polynomial rings and of polynomial rings in the context of (locally) essential domains.


References [Enhancements On Off] (What's this?)

  • 1. D. F. Anderson, A. Bouvier, D. E. Dobbs, M. Fontana, and S. Kabbaj, On Jaffard domains, Expo. Math., 6 (2) (1988), 145-175. MR 89c:13014
  • 2. D. F. Anderson and S. B. Mulay, Noncatenary factorial domains, Comm. Algebra, 17 (1989), 1179-1185. MR 90c:13021
  • 3. A. Bouvier, D. E. Dobbs, and M. Fontana, Universally catenarian integral domains, Advances in Math., 72 (1988), 211-238. MR 89m:13007
  • 4. A. Bouvier and S. Kabbaj, Examples of Jaffard domains, J. Pure Appl. Algebra, 54 (1988), 155-165. MR 89k:13019
  • 5. P.-J. Cahen, Dimension de l'anneau des polynômes à valeurs entières, Manuscripta Math., 67 (1990), 333-343. MR 91e:13010
  • 6. P.-J. Cahen and J.-L. Chabert, Coefficients et valeurs d'un polynôme, Bull. Sci. Math. France, 95 (1971), 295-304. MR 45:5126
  • 7. P.-J. Cahen and J.-L. Chabert, Integer-Valued Polynomials, Amer. Math. Soc. Surveys and Monographs 48, 1997. MR 98a:13002
  • 8. P.-J. Cahen and Y. Haouat, Polynômes à valeurs entières sur un anneau de pseudovaluation, Manuscripta Math., 61 (1988), 23-31. MR 89f:13007
  • 9. J.-L. Chabert, Anneaux de polynômes à valeurs entières et anneaux de Fatou, Bull. Soc. Math. France, 99 (1971), 273-283. MR 46:1780
  • 10. J.-L. Chabert, Les idéaux premiers de l'anneau des polynômes à valeurs entières, J. Reine Angew. Math., 293/294 (1977), 275-283. MR 56:345
  • 11. J.-L. Chabert, Un anneau de Prüfer, J. Algebra, 107 (1987), 1-16. MR 88i:13022
  • 12. J. David, A non-Noetherian factorial ring, Trans. Amer. Math. Soc., 169 (1972), 495-502. MR 46:7229
  • 13. J. David, A characteristic zero non-Noetherian factorial ring of dimension three, Trans. Amer. Math. Soc., 180 (1973), 315-325. MR 48:3951
  • 14. D. E. Dobbs, M. Fontana, and S. Kabbaj, Direct limits of Jaffard domains and S-domains, Comment. Math. Univ. St. Paul., 39 (2) (1990), 143-155. MR 91m:13012
  • 15. M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra, 181 (1996), 803-835. MR 97h:13011
  • 16. M. Fontana, L. Izelgue, S. Kabbaj, and F. Tartarone, On the Krull dimension of domains on integer-valued polynomials, Expo. Math., 15 (1997), 433-465. MR 98m:13027
  • 17. M. Fontana, L. Izelgue, S. Kabbaj, and F. Tartarone, Polynomial closure in essential domains and pullbacks, Lecture Notes in Pure and Appl. Math., Vol. 205, Dekker, New York, 1999, pp. 307-321. MR 2001g:13045
  • 18. K. Fujita, Three-dimensional unique factorization domain which is not catenary, J. Algebra 49 (1977), no. 2, 411-414. MR 57:6000
  • 19. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972. MR 55:323
  • 20. R. Gilmer, A two-dimensional non-Noetherian factorial ring, Proc. Amer. Math. Soc. 44 (1974), 25-30. MR 49:281
  • 21. M. Griffin, Some results on $v$-multiplication rings, Canad. J. Math., 19 (1967), 710-722. MR 35:6665
  • 22. M. Griffin, Rings of Krull type, J. Reine Angew. Math., 229 (1968), 1-27. MR 36:3778
  • 23. M. Griffin, Families of finite character and essential valuations, Trans. Amer. Math. Soc., 130 (1968), 75-85. MR 36:1423
  • 24. W. Heinzer, An essential integral domain with a nonessential localization, Canad. J. Math., 33 (1981), 400-403. MR 82k:13006
  • 25. W. Heinzer and J. Ohm, An essential ring which is not a $v$-multiplication ring, Canad. J. Math., 25 (1973), 856-861. MR 48:6093
  • 26. E. Houston, S. B. Malik, and J. L. Mott, Characterizations of ${\ast}$-multiplication domains, Canad. Math. Bull., 27 (1984), 48-52. MR 85d:13026
  • 27. P. Jaffard, Théorie de la dimension dans les anneaux de polynômes, Mém. Sci. Math. 146, Gauthier-Villars, Paris, 1960. MR 22:8038
  • 28. S. Kabbaj, Sur les S-domaines forts de Kaplansky, J. Algebra 137 (1991), 400-415. MR 92d:13008
  • 29. I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974. MR 49:10674
  • 30. S. Malik and J. L. Mott, Strong S-domains, J. Pure Appl. Algebra, 28 (1983), 249-264. MR 84m:13017
  • 31. J. L. Mott and M. Zafrullah, On Prüfer $v$-multiplication domains, Manuscripta Math., 35 (1981), 1-26. MR 83d:13026
  • 32. A. Seidenberg, On the dimension theory of rings, II, Pacific J. Math., 4 (1954), 603-614. MR 16:441g
  • 33. F. Tartarone, On the Krull dimension of Int$(D)$ when $D$ is a pullback, Lecture Notes in Pure and Appl. Math., Dekker, 185 (1997), 457-476. MR 98b:13011
  • 34. M. Zafrullah, Some polynomial characterizations of Prüfer $v$-multiplication domains, J. Pure Appl. Algebra, 32 (1984), 231-237. MR 85j:13012

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13C15, 13F20, 13F05, 13G05, 13B02, 13B30

Retrieve articles in all journals with MSC (2000): 13C15, 13F20, 13F05, 13G05, 13B02, 13B30


Additional Information

M. Fontana
Affiliation: Dipartimento di Matematica, Università degli Studi “Roma Tre”, Largo San L. Murialdo 1, 00146 Roma, Italy
Email: fontana@mat.uniroma3.it

S. Kabbaj
Affiliation: Department of Mathematics, P.O. Box 5046, KFUPM, Dhahran 31261, Saudi Arabia
Email: kabbaj@kfupm.edu.sa

DOI: https://doi.org/10.1090/S0002-9939-04-07502-1
Keywords: Krull dimension, valuative dimension, Jaffard domain, integer-valued polynomial ring, essential domain, Krull domain, UFD, PVMD, Kronecker function ring, star operation
Received by editor(s): January 15, 2003
Published electronically: April 21, 2004
Additional Notes: The first author was partially supported by a research grant MIUR 2001/2002 (Cofin 2000-MM01192794). The second author was supported by the Arab Fund for Economic and Social Development
This work was done while both authors were visiting Harvard University
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society