The stable rank of full corners in C*-algebras

Author:
Bruce Blackadar

Journal:
Proc. Amer. Math. Soc. **132** (2004), 2945-2950

MSC (2000):
Primary 46L05; Secondary 19B10

DOI:
https://doi.org/10.1090/S0002-9939-04-07148-5

Published electronically:
June 2, 2004

MathSciNet review:
2063114

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a treatment of Rieffel's theory of stable rank for C*-algebras in terms of left invertibility of generalized nonsquare matrices, and prove that if is a full projection in a unital C*-algebra , then the stable rank of the corner is at least as large as the stable rank of .

**[Bas68]**Hyman Bass,*Algebraic -theory*, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR**40:2736****[Bla83]**Bruce Blackadar,*A stable cancellation theorem for simple -algebras*, Proc. London Math. Soc. (3)**47**(1983), no. 2, 303-305, Appendix to: ``The cancellation theorem for projective modules over irrational rotation -algebras'' [Proc. London Math. Soc. (3)**47**(1983), no. 2, 285-302] by M. A. Rieffel. MR**85g:46086****[BP91]**Lawrence G. Brown and Gert K. Pedersen,*-algebras of real rank zero*, J. Funct. Anal.**99**(1991), no. 1, 131-149. MR**92m:46086****[Cun77]**Joachim Cuntz,*The structure of multiplication and addition in simple -algebras*, Math. Scand.**40**(1977), no. 2, 215-233. MR**58:17862****[GJ60]**Leonard Gillman and Meyer Jerison,*Rings of continuous functions*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**22:6994****[HV84]**Richard H. Herman and Leonid N. Vaserstein,*The stable range of -algebras*, Invent. Math.**77**(1984), no. 3, 553-555. MR**86a:46074****[HW41]**Witold Hurewicz and Henry Wallman,*Dimension Theory*, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. MR**3:312b****[Kat50]**Miroslav Katetov,*On rings of continuous functions and the dimension of compact spaces*, Casopis Pest. Mat. Fys.**75**(1950), 1-16. MR**12:119b****[Pea75]**A. R. Pears,*Dimension theory of general spaces*, Cambridge University Press, Cambridge, England, 1975. MR**52:15405****[Rie83]**Marc A. Rieffel,*Dimension and stable rank in the -theory of -algebras*, Proc. London Math. Soc. (3)**46**(1983), no. 2, 301-333. MR**84g:46085****[Rob80]**A. Guyan Robertson,*Stable range in -algebras*, Math. Proc. Cambridge Philos. Soc.**87**(1980), no. 3, 413-418. MR**82h:46079****[Rør88]**Mikael Rørdam,*Advances in the theory of unitary rank and regular approximation*, Ann. of Math. (2)**128**(1988), no. 1, 153-172. MR**90c:46072****[Vn71]**L. N. Vaserstein,*The stable range of rings and the dimension of topological spaces*, Funkcional. Anal. i Prilozen.**5**(1971), no. 2, 17-27. MR**44:1701****[War80]**R. B. Warfield, Jr.,*Cancellation of modules and groups and stable range of endomorphism rings*, Pacific J. Math.**91**(1980), no. 2, 457-485. MR**82m:16022****[Win01]**Wilhelm Winter,*Covering dimension for nuclear -algebras i, ii*, Preprint, 2001. MR**2002c:46134**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
46L05,
19B10

Retrieve articles in all journals with MSC (2000): 46L05, 19B10

Additional Information

**Bruce Blackadar**

Affiliation:
Department of Mathematics/084, University of Nevada, Reno, Reno, Nevada 89557

Email:
bruceb@math.unr.edu

DOI:
https://doi.org/10.1090/S0002-9939-04-07148-5

Keywords:
C*-algebra,
stable rank

Received by editor(s):
November 20, 2002

Published electronically:
June 2, 2004

Additional Notes:
This work was supported by NSF grant DMS-0070763

Communicated by:
David R. Larson

Article copyright:
© Copyright 2004
American Mathematical Society