Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

G-structure on the cohomology of Hopf algebras


Authors: Marco A. Farinati and Andrea L. Solotar
Journal: Proc. Amer. Math. Soc. 132 (2004), 2859-2865
MSC (2000): Primary 16E40, 16W30
Published electronically: June 2, 2004
MathSciNet review: 2063104
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that $\mathrm{Ext} ^{\bullet}_A(k,k)$ is a Gerstenhaber algebra, where $A$ is a Hopf algebra. In case $A=D(H)$ is the Drinfeld double of a finite-dimensional Hopf algebra $H$, our results imply the existence of a Gerstenhaber bracket on $H^{\bullet}_{GS}(H,H)$. This fact was conjectured by R. Taillefer. The method consists of identifying $H^{\bullet}_{GS}(H,H)\cong {\mathrm{Ext}}^{\bullet}_A(k,k)$ as a Gerstenhaber subalgebra of $H^{\bullet}(A,A)$ (the Hochschild cohomology of $A$).


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 16E40, 16W30

Retrieve articles in all journals with MSC (2000): 16E40, 16W30


Additional Information

Marco A. Farinati
Affiliation: Departamento de Matemática Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab I. 1428, Buenos Aires, Argentina
Email: mfarinat@dm.uba.ar

Andrea L. Solotar
Affiliation: Departamento de Matemática Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab I. 1428, Buenos Aires, Argentina
Email: asolotar@dm.uba.ar

DOI: http://dx.doi.org/10.1090/S0002-9939-04-07274-0
PII: S 0002-9939(04)07274-0
Keywords: Gerstenhaber algebras, Hopf algebras, Hochschild cohomology
Received by editor(s): August 27, 2002
Received by editor(s) in revised form: March 19, 2003
Published electronically: June 2, 2004
Additional Notes: This research was partially supported by UBACYT X062 and Fundación Antorchas (proyecto 14022 - 47). Both authors are research members of CONICET (Argentina).
Communicated by: Martin Lorenz
Article copyright: © Copyright 2004 American Mathematical Society