Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the singular braid monoid of an orientable surface


Authors: Jerónimo Díaz-Cantos, Juan González-Meneses and José M. Tornero
Journal: Proc. Amer. Math. Soc. 132 (2004), 2867-2873
MSC (2000): Primary 20F36; Secondary 20F38
DOI: https://doi.org/10.1090/S0002-9939-04-07307-1
Published electronically: May 20, 2004
MathSciNet review: 2063105
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that the singular braid monoid of an orientable surface can be embedded in a group. The proof is purely topological, making no use of the monoid presentation.


References [Enhancements On Off] (What's this?)

  • 1. J. Baez, Link invariants of finite type and perturbation theory. Lett. Math. Phys. 26 (1992), 43-51. MR 93k:57006
  • 2. D. Bar-Natan, On the Vassiliev knot invariants. Topology (2) 34 (1995), 423-472. MR 97d:57004
  • 3. G. Basset, Quasi-commuting extensions of groups. Comm. Algebra (11) 28 (2000), 5443-5454. MR 2001h:20083
  • 4. J. Birman, Braids, links and mapping class groups. Princeton University Press, Princeton, NJ, 1974. MR 51:11477
  • 5. J. Birman, New points of view in knot theory. Bull. Amer. Math. Soc. (N. S.) 28 (1993), 253-287. MR 94b:57007
  • 6. R. Fenn, E. Keyman and C. Rourke, The singular braid monoid embeds in a group. J. Knot Theory Ramifications 7 (1998), 881-892. MR 99k:57013
  • 7. J. González-Meneses, Presentations for the monoids of singular braids on closed surfaces. Comm. Algebra 30 (2002), 2829-2836. MR 2003b:20054

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20F36, 20F38

Retrieve articles in all journals with MSC (2000): 20F36, 20F38


Additional Information

Jerónimo Díaz-Cantos
Affiliation: Departamento de Álgebra, Universidad de Sevilla, Apdo. 1160, 41080 Sevilla, Spain

Juan González-Meneses
Affiliation: Departamento de Matemática Aplicada I, E.T.S. de Arquitectura, Universidad de Sevilla, Avda. Reina Mercedes, 41013 Sevilla, Spain
Address at time of publication: Departamento de Álgebra, Universidad de Sevilla, Apdo. 1160, 41080 Sevilla, Spain
Email: meneses@us.es

José M. Tornero
Affiliation: Departamento de Álgebra, Universidad de Sevilla, Apdo. 1160, 41080 Sevilla, Spain
Email: tornero@us.es

DOI: https://doi.org/10.1090/S0002-9939-04-07307-1
Keywords: Singular braids
Received by editor(s): February 21, 2003
Received by editor(s) in revised form: April 1, 2003
Published electronically: May 20, 2004
Additional Notes: The second author was supported by BFM 2001–3207 and FQM 218.
The third author was supported by BFM 2001–3207 and FQM 218.
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society