Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Summable processes versus semimartingales

Authors: Nicolae Dinculeanu and Oana Mocioalca
Journal: Proc. Amer. Math. Soc. 132 (2004), 3089-3095
MSC (2000): Primary 60H05; Secondary 60G20
Published electronically: May 20, 2004
MathSciNet review: 2063131
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The classical stochastic integral $\int H dX$ is defined for real-valued semimartingales $X$. For processes with values in a Banach space $E$, the stochastic integral $\int H dX$ is defined for locally summable processes $X$, using a measure-theoretical approach.

We investigate the relationship between semimartingales and locally summable processes.

A real-valued, locally summable process is a special semimartingale. We prove that in infinite-dimensional Banach spaces, a locally summable process is not necessarily a semimartingale.

References [Enhancements On Off] (What's this?)

  • [B-D] J. K. Brooks and N. Dinculeanu, Stochastic Integration in Banach Spaces, Seminar on Stochastic Processes, Birkhäuser, Boston, 1991, 27-115.
  • [D-M] Claude Dellacherie and Paul-André Meyer, Probabilités et potentiel, Hermann, Paris, 1975 (French). Chapitres I à IV; Édition entièrement refondue; Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. XV; Actualités Scientifiques et Industrielles, No. 1372. MR 0488194
  • [D] Nicolae Dinculeanu, Vector integration and stochastic integration in Banach spaces, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2000. MR 1782432
  • [K] A. U. Kussmaul, Stochastic integration and generalized martingales, Pitman Publishing, London-San Francisco, Calif.-Melbourne, 1977. Research Notes in Mathematics, No. 11. MR 0488281

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 60H05, 60G20

Retrieve articles in all journals with MSC (2000): 60H05, 60G20

Additional Information

Nicolae Dinculeanu
Affiliation: Department of Mathematics, University of Florida, 358 Little Hall, P.O. Box 118105, Gainesville, Florida 32611–8105

Oana Mocioalca
Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067

Keywords: Summable processes, semimartingale, integrable variation, integrable semivariation, local martingale, dual projection.
Received by editor(s): August 27, 2002
Published electronically: May 20, 2004
Communicated by: Richard C. Bradley
Article copyright: © Copyright 2004 American Mathematical Society