A REMARK ON A THEOREM BY DELIGNE

M. VAN DEN BERGH

(Communicated by Lance W. Small)

Abstract. We give a proof avoiding spectral sequences of Deligne’s decomposition theorem for objects in a triangulated category admitting a Lefschetz homomorphism.

Below \mathcal{A} is a triangulated category equipped with a bounded t-structure. In addition, \mathcal{A} will be equipped with an auto-equivalence $A \mapsto A(1)$ compatible with the t-structure.

In [1, 2] Deligne proves the following result:

Theorem 1. Let A be an object of \mathcal{A} equipped with an endomorphism $\phi : A[-1] \to A1$ such that its iterates $\phi^n : A[-n] \to An$ induce isomorphisms $H^{-n}(A) \to H^n(A)(n)$. Then there exists an isomorphism $A \cong \bigoplus_k H^{-k}(A)[k]$.

Deligne’s proof is slightly indirect. He first shows that a decomposition as asserted in Theorem 1 exists if and only if for every cohomological functor $T : \mathcal{A} \to \mathcal{C}$ to an abelian category the resulting spectral sequence

$$E_2^{pq} : T^p(H^q(A)) \Rightarrow T^{p+q}(A)$$

(1)

degenerates. He then proceeds to show that (1) does indeed degenerate.

The aim of this note is to give a proof of Theorem 1 that avoids the use of spectral sequences.

Let A, ϕ be as in the statement of Theorem 1. We start with the following statement:

$$(\text{Hyp}_n) \quad A \cong A_n \oplus \left(\bigoplus_{|k| > n} H^{-k}(A)[k] \right) \text{ with } A_n \in \mathcal{A}[-n,n].$$

By the boundedness of the t-structure, (Hyp_n) is true for $n \gg 0$. We need to show that it is true for $n = 0$, for which we use descending induction on n.

Assume (Hyp_n) is true for $n \geq 1$. We will show that (Hyp_{n-1}) is also true. Without loss of generality, we may assume that the isomorphism in the statement of (Hyp_n) is an equality. Let $i : A_n \to A$, $p : A \to A_n$ be, respectively, the inclusion and the projection map. They induce identifications $H^q(A) = H^q(A_n)$ for $|q| \leq n$.

Let α be the composition of the following maps:

$$H^{-n}(A) \to A_n[-n] \xrightarrow{i} A[-n] \xrightarrow{\phi^n} An \xrightarrow{p} A_nn \to H^n(A)(n)$$
where the first and last map are obtained from the canonical maps $H^{-n}(A_n)[n] \to A_n \to H^n(A_n)[-n]$ that exist because $A_n \in \mathcal{A}[-n,n]$.

Applying $H^0(-)$ and the hypotheses we find that $\alpha = H^0(\phi^n)$, and hence it is an isomorphism. Composing arrows we find that α is also the composition of maps

\begin{align*}
(2) & \quad H^{-n}(A) \to A_n[-n] \to H^n(A)(n), \\
(3) & \quad H^{-n}(A) \to A_nn \to H^n(A)(n)
\end{align*}

inducing isomorphisms on H^0.

From (2) it follows that

\begin{equation}
A_n[-n] \cong H^{-n}(A) \oplus C\tag{4}
\end{equation}

for some $C \in \mathcal{A}^{[1,2n]}$. Shifting and substituting in (3) we deduce that α is a composition

$$H^{-n}(A) \to H^{-n}(A)[2n](n) \oplus C[2n](n) \to H^n(A)(n).$$

Since $\text{Hom}_\mathcal{A}(H^{-n}(A)[2n](n), H^n(A)(n)) = 0$, we see that α is actually a composition

$$H^{-n}(A) \to C[2n](n) \to H^n(A)(n),$$

and these maps still induce isomorphisms in degree zero. Thus

$$C[2n](n) \cong H^n(A)(n) \oplus D$$

for $D \in \mathcal{A}^{[-2n+1,-1]}$. Shifting and substituting in (4) yields a decomposition

$$A_n \cong H^{-n}(A)[n] \oplus H^n(A)[-n] \oplus D-n.$$

Putting $A_{n-1} = D-n$ finishes the induction step and the proof.

Remark 2. It follows from the above proof that the decomposition asserted in Theorem still exists if we have maps $\phi_n : A[-n] \to An$ inducing isomorphisms $H^{-n}(A) \to H^n(A)(n)$ that are not necessarily powers of a fixed $\phi : A[-1] \to A1$. However, I have no example where this extra generality applies.

Remark 3. In [2] Deligne constructs several canonical isomorphisms

$$A \cong \bigoplus_k H^{-k}(A)[k].$$

We have not tried to duplicate these constructions with our approach.

References
