Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Grekos' S function has a linear growth

Authors: Julien Cassaigne and Alain Plagne
Journal: Proc. Amer. Math. Soc. 132 (2004), 2833-2840
MSC (2000): Primary 11B13
Published electronically: June 2, 2004
MathSciNet review: 2063100
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An exact additive asymptotic basis is a set of nonnegative integers such that there exists an integer $h$ with the property that any sufficiently large integer can be written as a sum of exactly $h$ elements of $\mathcal{A}$. The minimal such $h$ is the exact order of $\mathcal{A}$ (denoted by $ \mbox{ord}^{\ast} ( \mathcal{A} )$). Given any exact additive asymptotic basis $\mathcal{A}$, we define $\mathcal{A}^{\ast}$ to be the subset of $\mathcal{A}$ composed with the elements $a \in \mathcal{A}$ such that $\mathcal{A} \setminus \{ a \}$ is still an exact additive asymptotic basis. It is known that $ \mathcal{A} \setminus \mathcal{A}^{\ast}$ is finite.

In this framework, a central quantity introduced by Grekos is the function $S(h)$ defined as the following maximum (taken over all bases $\mathcal{A}$ of exact order $h$):

\begin{displaymath}S (h) = \max_{\mathcal{A}} \hspace*{.1in} \limsup_{a \in \mat... ...ace*{.1in} \mbox{ord}^{\ast} ( \mathcal{A} \setminus \{ a \}). \end{displaymath}

In this paper, we introduce a new and simple method for the study of this function. We obtain a new estimate from above for $S$ which improves drastically and in any case on all previously known estimates. Our estimate, namely $S(h) \leq 2h$, cannot be too far from the truth since $S$ verifies $S(h) \geq h+1$. However, it is certainly not always optimal since $S(2)=3$. Our last result shows that $S (h)$ is in fact a strictly increasing sequence.

References [Enhancements On Off] (What's this?)

  • 1. R. de la Bretèche, Problèmes extrémaux pour les bases additives, manuscript (2001).
  • 2. B. Deschamps and G. Grekos, Estimation du nombre d'exceptions à ce qu'un ensemble de base privé d'un point reste un ensemble de base, J. reine angew. Math. 539 (2001), 45-53. MR 2002m:11008
  • 3. P. Erdos, Einige Bemerkungen zur Arbeit von A. Stöhr ``Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe'', J. reine angew. Math. 197 (1957), 216-219. MR 19:122b
  • 4. P. Erdos and R. L. Graham, On bases with an exact order, Acta Arith. 37 (1980), 201-207. MR 82e:10093
  • 5. P. Erdos and R. L. Graham, Old and new problems and results in combinatorial number theory, Enseign. Math. 28 (1980), 128 pp. MR 82j:10001
  • 6. G. Grekos, Minimal additive bases and related problems, in: ``Journées Arithmétiques, Exeter (Grande-Bretagne), 1980'', edited by J. V. Armitage, London Math. Soc. Lecture Note Series 56, Cambridge Univ. Press, 1982, 300-305. MR 85a:11005
  • 7. G. Grekos, Sur l'ordre d'une base additive, Séminaire de Théorie des Nombres de Bordeaux, Année 1987/88, exposé 31. MR 90d:11021
  • 8. G. Grekos, Extremal problems about additive bases, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 87-92. MR 2002d:11013
  • 9. H. Halberstam and K. Roth, Sequences, The Clarendon Press, Oxford, 1966. MR 35:1565
  • 10. E. Härtter, Ein Beitrag zur Theorie der Minimalbasen, J. reine angew. Math. 196 (1956), 170-204. MR 19:122a
  • 11. J. C. M. Nash, Some applications of a theorem of M. Kneser, J. Number Theory 44 (1993), 1-8. MR 94k:11015
  • 12. M. B. Nathanson, Minimal bases and powers of 2, Acta Arith. 49 (1988), 525-532. MR 89m:11015
  • 13. A. Plagne, Removing one element from an exact additive basis, J. Number Theory 87 (2001), 306-314. MR 2002d:11014
  • 14. A. Stöhr, Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe I, II, J. reine angew. Math. 194 (1955), 40-65 and 111-140. MR 17:713a

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11B13

Retrieve articles in all journals with MSC (2000): 11B13

Additional Information

Julien Cassaigne
Affiliation: Institut de Mathématiques de Luminy, 163 avenue de Luminy, Case 907, F-13288 Marseille Cedex 9, France

Alain Plagne
Affiliation: CMAT, École polytechnique, F-91128 Palaiseau Cedex, France

Keywords: Additive basis, exact order
Received by editor(s): June 17, 2002
Published electronically: June 2, 2004
Communicated by: David E. Rohrlich
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society