Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Base-cover paracompactness

Author: Strashimir G. Popvassilev
Journal: Proc. Amer. Math. Soc. 132 (2004), 3121-3130
MSC (2000): Primary 54D20, 54D70, 54F05; Secondary 54D55, 54B05, 54B10, 06A05, 03E15, 03E35
Published electronically: May 12, 2004
MathSciNet review: 2063135
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Call a topological space $X$ base-cover paracompact if $X$ has an open base $\mathcal{B}$ such that every cover $\mathcal{C}\subset\mathcal{B}$ of $X$ contains a locally finite subcover. A subspace of the Sorgenfrey line is base-cover paracompact if and only if it is $F_\sigma$. The countable sequential fan is not base-cover paracompact. A paracompact space is locally compact if and only if its product with every compact space is base-cover paracompact.

References [Enhancements On Off] (What's this?)

  • 1. A. V. Arhangelski, On the metrization of topological spaces, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 8 (1960), no. 9, 589-595 (Russian). MR 23:A2861
  • 2. Zoltan Balogh and Harold Bennett, Total paracompactness of real GO-spaces, Proc. Amer. Math. Soc. 101 (1987), no. 4, 753-760. MR 89a:54042
  • 3. Harold R. Bennett, Robert W. Heath and David J. Lutzer, GO-spaces with $\sigma$-closed discrete dense subsets, Proc. Amer. Math. Soc. 129 (2001), no. 3, 931-939. MR 2001i:54033
  • 4. Carlos R. Borges and Albert C. Wehrly, A study of $D$-spaces, Topology Proc. 16 (1991), 7-15; Another study of $D$-spaces, Q&A Gen. Topology 14 (1996), no. 1, 73-76 (Correction: Q&A Gen. Topology 16 (1998), no. 1, 77-78). MR 96m:54033
  • 5. D. Burke and J. Moore, Subspaces of the Sorgenfrey line, Topol. Appl. 90 (1998), 57-68. MR 99j:54030
  • 6. P. de Caux, Yet another property of the Sorgenfrey line, Topology Proc. 6 (1981), 31-43. MR 83h:54032
  • 7. H. H. Corson, T. J. McMinn, E. A. Michael and J. Nagata, Bases and local finiteness, Notices Amer. Math. Soc. 6 (1959), 814 (abstract).
  • 8. D. W. Curtis, Total and absolute paracompactness, Fund. Math. 77 (1973), 277-283. MR 47:9538
  • 9. Eric K. van Douwen and David J. Lutzer, A note on paracompactness in generalized ordered spaces, Proc. Amer. Math. Soc. 125 (1997), no. 4, 1237-1245. MR 97f:54039
  • 10. Eric K. van Douwen and Washek F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), no. 2, 371-377. MR 80h:54027
  • 11. M. J. Faber, Metrizability in generalized ordered spaces, Mathematical Centre Tracts, No. 53, Mathematisch Centrum, Amsterdam, 1974. MR 54:6097
  • 12. W. G. Fleissner and A. M. Stanley, $D$-spaces, Topology Appl. 114 (2001), 261-271. MR 2002e:54013
  • 13. R. Ford, Basic properties in dimension theory, Dissertation, Auburn University, 1963.
  • 14. J. Gerlits and Zs. Nagy, Some properties of $C(X)$, I, Topology Appl. 14 (1982), 151-161. MR 84f:54021
  • 15. Gary Gruenhage, $k$-spaces and products of closed images of metric spaces, Proc. Amer. Math. Soc. 80 (1980), no. 3, 478-482. MR 82a:54047
  • 16. A. Lelek, Some cover properties of spaces, Fund. Math. 64 (1969), 209-218. MR 39:3442
  • 17. D. J. Lutzer, On generalized ordered spaces, Dissertationes Math. Rozprawy Mat. 89 (1971). MR 48:3018
  • 18. John O'Farrell, Some methods of determining total paracompactness, Dissertation, Auburn University, 1982.
  • 19. John O'Farrell, The Sorgenfrey line is not totally metacompact, Houston J. Math. 9 (1983), no. 2, 271-273. MR 84i:54039
  • 20. John O'Farrell, Construction of a Hurewicz metric space whose square is not a Hurewicz space, Fund. Math. 127 (1987), 41-43. MR 88h:54035
  • 21. S. G. Popvassilev, Marczewski measurable sets, base-cover paracompactness and uniform base-cover paracompactness, Dissertation, Auburn University, 2002.
  • 22. S. G. Popvassilev, Base-family paracompactness, submitted for publication.
  • 23. John E. Porter, Generalizations of totally paracompact spaces, Dissertation, Auburn University, 2000.
  • 24. John E. Porter, Base-paracompact spaces, Topology Appl. 128 (2003), nos. 2-3, 145-156. MR 2004b:54034
  • 25. R. Telgárski and H. Kok, The space of rationals is not absolutely paracompact, Fund. Math. 73 (1971/72), 75-78. MR 45:2662
  • 26. S. Watson, The construction of topological spaces: planks and resolutions, Recent progress in general topology (Prague, 1991), North-Holland, Amsterdam, 1992, pp. 673-757.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 54D20, 54D70, 54F05, 54D55, 54B05, 54B10, 06A05, 03E15, 03E35

Retrieve articles in all journals with MSC (2000): 54D20, 54D70, 54F05, 54D55, 54B05, 54B10, 06A05, 03E15, 03E35

Additional Information

Strashimir G. Popvassilev
Affiliation: Department of Mathematics, University of Louisiana at Lafayette, 217 Maxim D. Doucet Hall, P.O. Box 41010, Lafayette, Louisiana 70504-1010

Keywords: Base-cover paracompact, GO-space, sequential fan, $D$-space
Received by editor(s): November 20, 2002
Received by editor(s) in revised form: June 28, 2003
Published electronically: May 12, 2004
Additional Notes: The author was supported in part by National Science Fund of Bulgaria Grant MM–1105/2001
Communicated by: Alan Dow
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society