Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Vector measure Banach spaces containing a complemented copy of $c_{0}$


Authors: A. Picón and C. Piñeiro
Journal: Proc. Amer. Math. Soc. 132 (2004), 2893-2898
MSC (2000): Primary 46G10
DOI: https://doi.org/10.1090/S0002-9939-04-07518-5
Published electronically: May 21, 2004
MathSciNet review: 2063108
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X $ a Banach space and $ \Sigma $ a $\sigma$-algebra of subsets of a set $\Omega $. We say that a vector measure Banach space $ (\mathcal{M} (\Sigma , X ) , \Vert \cdot \Vert _\mathcal{M })$has the bounded Vitaly-Hahn-Sacks Property if it satisfies the following condition: Every vector measure $ m : \Sigma \longrightarrow X $ , for which there exists a bounded sequence $(m_{n})$ in $\mathcal{M } (\Sigma, X )$ verifying $ \displaystyle\lim_{n \to \infty} m_{n} ( A ) = m(A)$ for all $A \in \Sigma $, must belong to $\mathcal{M} (\Sigma, X)$. Among other results, we prove that, if $\mathcal{M}(\Sigma, X)$ is a vector measure Banach space with the bounded V-H-S Property and containing a complemented copy of $c_{0}$, then $X$ contains a copy of $c_{0}$.


References [Enhancements On Off] (What's this?)

  • [DU] J. DIESTEL, J. J. UHL, JR., Vector measures, Mathematical Surveys 15, Amer. Math. Soc., Providence, Rhode Island (1977). MR 56:12216
  • [CM] P. CEMBRANOS, J. MENDOZA, Banach spaces of vector-valued functions, Lecture Notes in Math., no. 1676, Springer-Verlag (1977). MR 99f:46049
  • [D] L. DREWNOWSKI, When does $ ca( \Sigma , X)$ contain a copy of $l_\infty $ or $c_0$?, Proc. Amer. Math. Soc. 109 (1990), 747-752. MR 90k:46057
  • [F] J. C. FERRANDO, When does $ bvca( \Sigma , X)$contain a copy of $l_\infty $?, Math. Scand. 74 (1994), 271-274. MR 95m:46032
  • [FE] J. C. FERRANDO, Complemented copies of $c_0$ in $ ba( \Sigma ,X)$, Math. Proc. Cambridge Philos. Soc., 129 (2000), 321-324. MR 2000m:46043
  • [L] H. ELTON LACEY, The isometric theory of classical Banach spaces, Springer-Verlag, 1974. MR 58:12308

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46G10

Retrieve articles in all journals with MSC (2000): 46G10


Additional Information

A. Picón
Affiliation: Departamento de Matemáticas, Facultad de Ciencias Experimentales, Campus universitario de El Carmen, Universidad de Huelva, 21071, Huelva, Spain

C. Piñeiro
Affiliation: Departamento de Matemáticas, Facultad de Ciencias Experimentales, Campus universitario de El Carmen, Universidad de Huelva, 21071, Huelva, Spain
Email: candido@uhu.es

DOI: https://doi.org/10.1090/S0002-9939-04-07518-5
Received by editor(s): May 14, 2002
Published electronically: May 21, 2004
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society