Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

All frame-spun knots are slice


Author: Greg Friedman
Journal: Proc. Amer. Math. Soc. 132 (2004), 3103-3109
MSC (2000): Primary 57Q45
DOI: https://doi.org/10.1090/S0002-9939-04-07541-0
Published electronically: May 12, 2004
MathSciNet review: 2063133
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Frame-spun knots are constructed by spinning a knot of lower dimension about a framed submanifold of $S^n$. We show that all frame-spun knots are slice (null-cobordant).


References [Enhancements On Off] (What's this?)

  • 1. E. Artin, Zur Isotopie zweidimensionalen Flächen im $R_4$, Abh. Math. Sem. Univ. Hamburg 4 (1926), 174-177.
  • 2. Sylvain Cappell, Superspinning and knot complements, Topology of Manifolds (Proc. Inst. Univ. of Georgia, Athens, Ga, 1969), Markham, Chicago, 1970, pp. 358-383. MR 43:2711
  • 3. Albrecht Dold, Lectures on algebraic topology, Springer-Verlag, Berlin-Heidelberg-New York, 1972. MR 54:3685
  • 4. Edward Fadell, Generalized normal bundles for locally-flat imbeddings, Trans. Amer. Math. Soc. 114 (1965), 488-513. MR 31:4037
  • 5. Greg Friedman, Spinning constructions for higher dimensional knots, in preparation.
  • 6. -, Polynomial invariants of non-locally-flat knots, Ph.D. thesis, New York University, New York, NY, 2001.
  • 7. -, Alexander polynomials of non-locally-flat knots, Indiana Univ. Math. J. 52 (2003), 1479-1578; see also http://www.math.yale.edu/~friedman.
  • 8. Michel A. Kervaire, Les n\oeuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271. MR 32:6479
  • 9. John R. Klein and Alexander I. Suciu, Inequivalent fibred knots whose homotopy Seifert pairings are isometric, Math. Ann. 289 (1991), 683-701. MR 92d:57015
  • 10. Jerome Levine, Polynomial invariants of knots of codimension two, Ann. of Math 84 (1966), no. 2, 537-554. MR 34:808
  • 11. -, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244. MR 39:7618
  • 12. -, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185-198. MR 42:1133
  • 13. -, Doubly sliced knots and doubled disk knots, Michigan Math. J. 30 (1983), 249-256. MR 85h:57024
  • 14. J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer-Verlag, New York, 1973. MR 58:22129
  • 15. Dennis Roseman, Spinning knots about submanifolds; spinning knots about projections of knots, Topology and Appl. 31 (1989), 225-241. MR 90e:57045
  • 16. James A. Schafer, Topological Pontrjagin classes, Comment. Math. Helv. 45 (1970), 315-332. MR 43:1199
  • 17. Alexander I. Suciu, Inequivalent frame-spun knots with the same complement, Comment. Math. Helvetici 67 (1992), 47-63. MR 93a:57026

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57Q45

Retrieve articles in all journals with MSC (2000): 57Q45


Additional Information

Greg Friedman
Affiliation: Department of Mathematics, Yale University, 10 Hillhouse Avenue, PO Box 208283, New Haven, Connecticut 06520
Email: friedman@math.yale.edu

DOI: https://doi.org/10.1090/S0002-9939-04-07541-0
Keywords: Knots, knot cobordism, slice knots, knot spinning, frame spinning, Seifert matrix
Received by editor(s): May 20, 2003
Published electronically: May 12, 2004
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society